我们的工作侧重于额外的渐变学习算法,用于在双线性零和游戏中查找纳什均衡。该方法可以正式被认为是乐观镜下降\ Cite {DBLP:Cenf / ICLR / Mertikopouloslz19}的典型方法,用于中间梯度步骤,基本上导致计算(近似)最佳反应策略先前迭代的轮廓。虽然乍一看,由于不合理的大,但是对于迭代算法,中间学习步骤,我们证明该方法保证了持续收敛到均衡。特别是,我们表明该算法首先达到$ \ eta ^ {1 / rho} $ - 近似纳什均衡,以$ \ rho> 1 $,通过减少每次迭代的kullback-leibler分歧至少$ \ omega (\ eta ^ {1+ \ frac {1} {\ rho})$,因为足够小的学习率,$ \ eta $直到该方法成为承包地图,并收敛到确切的均衡。此外,我们对乘法权重更新方法的乐观变体进行实验比较,\ Cite {Daskalakis2019LastITERATECZ}并显示我们的算法具有显着的实际潜力,因为它在加速收敛方面提供了大量的收益。
translated by 谷歌翻译
游戏中的学习理论在AI社区中很突出,这是由多个不断上升的应用程序(例如多代理增强学习和生成对抗性网络)的动机。我们提出了突变驱动的乘法更新(M2WU),以在两人零和零正常形式游戏中学习平衡,并证明它在全面和嘈杂的信息反馈设置中都表现出了最后的题融合属性。在全信息反馈设置中,玩家观察了实用程序功能的确切梯度向量。另一方面,在嘈杂的信息反馈设置中,他们只能观察到嘈杂的梯度向量。现有的算法,包括众所周知的乘法权重更新(MWU)和乐观的MWU(OMWU)算法,未能收敛到具有嘈杂的信息反馈的NASH平衡。相反,在两个反馈设置中,M2WU表现出最后的近期收敛到NASH平衡附近的固定点。然后,我们证明它通过迭代地适应突变项来收敛到精确的NASH平衡。我们从经验上确认,M2WU在可剥削性和收敛速率方面胜过MWU和OMWU。
translated by 谷歌翻译
在博弈论中的精髓结果是von Neumann的Minmax定理,这些定理使得零和游戏承认基本上独特的均衡解决方案。古典学习结果对本定理构建,以表明在线无后悔动态会聚到零和游戏中的时间平均意义上的均衡。在过去几年中,一个关键的研究方向专注于表征这种动态的日常行为。一般结果在这个方向上表明,广泛的在线学习动态是循环的,并且在零和游戏中正式的Poincar {e}复发。在具有时间不变均衡的定期零和游戏的情况下,我们分析了这些在线学习行为的稳健性。该模型概括了通常的重复游戏制定,同时也是参与者之间反复竞争的现实和自然模型,这取决于外源性环境变化,如日期效果,周到一周的趋势和季节性。有趣的是,即使在最简单的这种情况下,也可能失败的时间平均收敛性,尽管有均衡是固定的。相比之下,使用新颖的分析方法,我们表明Poincar \'{E}尽管这些动态系统的复杂性,非自主性质,但是普及的复发概括。
translated by 谷歌翻译
最近的多人游戏的理论和应用方面的最新进步,从电子运动到多种子体生成的对抗网络,我们专注于团队零和游戏中的最大优化。在这类游戏中,玩家分为两支队伍,在同一支队内等等,对手团队的相反标志。与TextBook二手零和游戏不同,在我们的类中找到纳什均衡可以被证明是CLS-Hard,即,它不太可能具有用于计算NASH均衡的多项式时间算法。此外,在该广义框架中,使用梯度下降上升(GDA),其乐观变体和额外梯度,我们建立了即使是渐近的最后一次迭代或时间平均收敛到纳什均衡。具体来说,我们展示了一个诱导效用是\ emph {non}的团队游戏系列\ \ emph {non}有吸引力的\ {per-se}混合的纳什均衡,作为底层优化景观的严格鞍点。利用控制理论的技术,我们通过设计局部收敛的修改GDA来补充这些负面结果,以纳入均衡。最后,我们讨论了我们的框架与AI架构的联系,其中与多助理生成对冲网络这样的团队竞争结构。
translated by 谷歌翻译
当学习者与其他优化代理进行连续游戏时,我们研究了遗憾最小化的问题:在这种情况下,如果所有玩家都遵循一种无重组算法,则相对于完全对手环境,可能会达到较低的遗憾。我们在变异稳定的游戏(包括所有凸孔和单调游戏的连续游戏)的背景下研究了这个问题,当玩家只能访问其个人回报梯度时。如果噪音是加性的,那么游戏理论和纯粹的对抗性设置也会获得类似的遗憾保证。但是,如果噪声是乘法的,我们表明学习者实际上可以持续遗憾。我们通过学习速率分离的乐观梯度方案实现了更快的速度 - 也就是说,该方法的外推和更新步骤被调整为不同的时间表,具体取决于噪声配置文件。随后,为了消除对精致的超参数调整的需求,我们提出了一种完全自适应的方法,可以在最坏的和最佳案例的遗憾保证之间平稳地插入。
translated by 谷歌翻译
在本文中,我们调查了正规化的力量,即在解决广泛形式的游戏(EFGS)方面的加强学习和优化方面的常见技术。我们提出了一系列新算法,基于正规化游戏的回报功能,并建立一组收敛结果,这些结果严格改善了现有的假设或更强的收敛保证。特别是,我们首先证明了膨胀的乐观镜下降(DOMD),一种用于求解EFG的有效变体,具有自适应正则化可以实现快速的$ \ tilde o(1/t)$ last-Ilt-Ilt-Ilt-It-last-Ilt-It-titer-In-titer-Inter-In-Elt-It-Triperate Connergengengenge没有纳什平衡(NE)的独特性假设。此外,正规化的膨胀倍增权重更新(reg-domwu)是reg-domd的实例,进一步享受了$ \ tilde o(1/t)$ ther-tir-tir-tir-tir-tir-tir-ter-tir-tir-ter-tir-tir-tir-tir-tir-tir-tir-tir-tir-ter-ter-ter-ter-ter-ter-ter-ter-ter-tir-ter-ter-tir-trientate Convergence。这解决了一个关于OMWU算法是否可以在没有EFG和正常形式游戏文献中的唯一假设的情况下获得的迭代融合的一个悬而未决的问题。其次,我们表明,正式化的反事实遗憾最小化(reg-cfr),具有乐观的镜像下降算法的变体作为遗憾少量器,可以实现$ o(1/t^{1/4})$ best-Ilterate和$ $ o(1/t^{3/4})$用于在EFG中查找NE的平均值收敛率。最后,我们表明Reg-CFR可以实现渐近的最后一介质收敛,而最佳$ O(1/t)$平均识别收敛速率可用于查找扰动的EFGS的NE,这对于找到近似广泛形式的完美非常有用平衡(EFPE)。据我们所知,它们构成了CFR型算法的第一个最后近期收敛结果,同时匹配SOTA平均识别收敛速率在寻找非扰动的EFG中的NE中。我们还提供数值结果来证实我们算法的优势。
translated by 谷歌翻译
Cheung和Piliouras(2020)最近表明,乘法权重更新方法的两个变体 - OMWU和MWU-显示的相反的收敛性属性取决于游戏是零和合作的。受这项工作的启发以及有关学习以优化单个功能的最新文献,我们引入了一个新的框架,用于学习在游戏中与NASH Eqeilibria的最后近期融合,在这种情况下,更新规则的系数(学习率)沿着轨迹学习了,这是由增强力学学习的以游戏性质为条件的学习策略:\ textit {游戏签名}。我们使用两人游戏的新分解构建后者,分成对应于交换性投影操作员的八个组件,从而概括和统一文献中研究的最新游戏概念。当学习系数时,我们比较了各种更新规则的性能,并表明RL策略能够利用各种游戏类型的游戏签名。在此过程中,我们介绍了CMWU,这是一种将共识优化扩展到受约束案例的新算法,对零和bimatrix游戏具有本地收敛保证,并证明它在具有恒定系数和跨系数的零和零游戏上都具有竞争性能学习系数时的频谱。
translated by 谷歌翻译
迄今为止,游戏中的学习研究主要集中在正常形式游戏上。相比之下,我们以广泛的形式游戏(EFG),尤其是在许多代理商远远落后的EFG中对学习的理解,尽管它们与许多现实世界的应用更加接近。我们考虑了网络零和广泛表单游戏的天然类别,该游戏结合了代理收益的全球零和属性,图形游戏的有效表示以及EFG的表达能力。我们检查了这些游戏中乐观梯度上升(OGA)的收敛属性。我们证明,这种在线学习动力学的时间平均值表现出$ O(1/t)$ rate contergence convergence contergence contergence。此外,我们表明,对于某些与游戏有关的常数$ c> 0 $,日常行为也与速率$ o(c^{ - t})$收敛到nash。
translated by 谷歌翻译
最近,Daskalakis,Fisselson和Golowich(DFG)(Neurips`21)表明,如果所有代理在多人普通和正常形式游戏中采用乐观的乘法权重更新(OMWU),每个玩家的外部遗憾是$ o(\ textrm {polylog}(t))$ the游戏的$重复。我们从外部遗憾扩展到内部遗憾并交换后悔,从而建立了以$ \ tilde {o}的速率收敛到近似相关均衡的近似相关均衡(t ^ { - 1})$。由于陈和彭(神经潜行群岛20),这实质上提高了以陈和彭(NEURIPS20)的相关均衡的相关均衡率,并且在无遗憾的框架内是最佳的 - 以$ $ $ to to polylogarithmic因素。为了获得这些结果,我们开发了用于建立涉及固定点操作的学习动态的高阶平滑的新技术。具体而言,我们确定STOLTZ和LUGOSI(Mach Learn`05)的无内部遗憾学习动态在组合空间上的无外部后悔动态等效地模拟。这使我们可以在指数大小的集合上交易多项式大型马尔可夫链的计算,用于在指数大小的集合上的(更良好的良好)的线性变换,使我们能够利用类似的技术作为DGF到接近最佳地结合内心遗憾。此外,我们建立了$ O(\ textrm {polylog}(t))$ no-swap-recreet遗憾的blum和mansour(bm)的经典算法(JMLR`07)。我们这样做是通过基于Cauchy积分的技术来介绍DFG的更有限的组合争论。除了对BM的近乎最优遗憾保证的阐明外,我们的论点还提供了进入各种方式的洞察,其中可以在分析更多涉及的学习算法中延长和利用DFG的技术。
translated by 谷歌翻译
在这项研究中,我们考虑了两个玩家零和游戏中的正规领导者(FTRL)动力学的变体。在时间平衡策略时,FTRL保证会融合到NASH平衡,而许多变体都遭受了极限自行车行为的问题,即缺乏最后的介质收敛保证。为此,我们提出了一种突变FTRL(M-FTRL),该算法引入了用于动作概率扰动的突变。然后,我们研究了M-FTRL的连续时间动力学,并提供了强大的收敛保证,可以向固定点提供近似于NASH平衡的固定点。此外,我们的仿真表明,M-FTRL比FTRL和乐观的FTRL在全信息反馈下享有更快的收敛速度,并且在强盗反馈下表现出明显的收敛性。
translated by 谷歌翻译
当今许多大型系统的设计,从交通路由环境到智能电网,都依赖游戏理论平衡概念。但是,随着$ n $玩家游戏的大小通常会随着$ n $而成倍增长,标准游戏理论分析实际上是不可行的。最近的方法通过考虑平均场游戏,匿名$ n $玩家游戏的近似值,在这种限制中,玩家的数量是无限的,而人口的状态分布,而不是每个单独的球员的状态,是兴趣。然而,迄今为止研究最多的平均场平衡的平均场nash平衡的实际可计算性通常取决于有益的非一般结构特性,例如单调性或收缩性能,这是已知的算法收敛所必需的。在这项工作中,我们通过开发均值相关和与粗相关的平衡的概念来研究平均场比赛的替代途径。我们证明,可以使用三种经典算法在\ emph {ash All Games}中有效地学习它们,而无需对游戏结构进行任何其他假设。此外,我们在文献中已经建立了对应关系,从而获得了平均场 - $ n $玩家过渡的最佳范围,并经验证明了这些算法在简单游戏中的收敛性。
translated by 谷歌翻译
我们开发了一个统一的随机近似框架,用于分析游戏中多学院在线学习的长期行为。我们的框架基于“原始偶尔”,镜像的Robbins-Monro(MRM)模板,该模板涵盖了各种各样的流行游戏理论学习算法(梯度方法,乐观的变体,Exp3算法,用于基于付费的反馈,在有限游戏等中)。除了提供这些算法的综合视图外,提出的MRM蓝图还使我们能够在连续和有限的游戏中获得渐近和有限时间的广泛新收敛结果。
translated by 谷歌翻译
我们考虑战略设置,其中几个用户在重复的在线互动中聘用,辅助最小化的代理商代表他们反复发挥“游戏”。我们研究了代理人的重复游戏的动态和平均结果,并将其视为诱导用户之间的元游戏。我们的主要焦点是用户可以在此元游戏中从“操纵”他们自己的代理商中可以受益于他们自己的代理商。我们正式定义了普通游戏的这种“用户代理元荟萃游戏”模型,讨论了自动化代理动态的不同概念下的属性,并分析了2x2游戏中用户的均衡,其中动态收敛到a单均衡。
translated by 谷歌翻译
主导的行动是自然的(也许是最简单的)多代理概括的子最优动作,如标准单代理决策中的那样。因此类似于标准强盗学习,多代理系统中的基本学习问题是如果他们只能观察到他们播放动作的回报的嘈杂的强盗反馈,那么代理商可以学会有效地消除所有主导的动作。令人惊讶的是,尽管有一个看似简单的任务,我们展示了一个相当负面的结果;也就是说,标准没有遗憾的算法 - 包括整个双平均算法的家庭 - 可呈指数级地取消逐渐消除所有主导的行动。此外,具有较强的交换后悔的算法也遭受了类似的指数低效率。为了克服这些障碍,我们开发了一种新的算法,调整EXP3,历史奖励减少(exp3-DH); Exp3-DH逐渐忘记仔细量身定制的速率。我们证明,当所有代理运行Exp3-DH(A.K.A.,在多代理学习中自行发行)时,所有主导的行动都可以在多项多轮内迭代地消除。我们的实验结果进一步证明了Exp3-DH的效率,即使是那些专门用于在游戏中学习的最先进的强盗算法,也无法有效地消除所有主导的行动。
translated by 谷歌翻译
在拍卖领域,了解重复拍卖中学习动态的收敛属性是一个及时,重要的问题,例如在线广告市场中有许多应用程序。这项工作着重于重复的首次价格拍卖,该物品具有固定值的竞标者学会使用基于平均值的算法出价 - 大量的在线学习算法,其中包括流行的无regret算法,例如多重权重更新,并遵循扰动的领导者。我们完全表征了基于均值算法的学习动力学,从收敛到拍卖的NASH平衡方面,具有两种感觉:(1)时间平均水平:竞标者在bidiper the NASH平衡方面的回合分数,在极限中均在极限中。 ; (2)最后一题:竞标者的混合策略概况接近限制的NASH平衡。具体而言,结果取决于最高值的投标人的数量: - 如果数量至少为三个,则竞标动力学几乎可以肯定地收敛到拍卖的NASH平衡,无论是在时间平时还是在最后近期的情况下。 - 如果数字为两个,则竞标动力学几乎可以肯定会在时间平时收敛到NASH平衡,但不一定在最后近期。 - 如果数字是一个,则竞标动力学可能不会在时间平均值或最后近期的时间内收敛到NASH平衡。我们的发现为学习算法的融合动力学研究开辟了新的可能性。
translated by 谷歌翻译
我们开发了一种使用无遗憾的游戏动态解决凸面优化问题的算法框架。通过转换最小化凸起函数以顺序方式解决Min-Max游戏的辅助问题的问题,我们可以考虑一系列必须在另一个之后选择其行动的两名员工的一系列策略。这些策略的常见选择是所谓的无悔的学习算法,我们描述了许多此类并证明了遗憾。然后,我们表明许多凸面优化的经典一阶方法 - 包括平均迭代梯度下降,弗兰克 - 沃尔夫算法,重球算法和Nesterov的加速方法 - 可以被解释为我们框架的特殊情况由于每个玩家都做出正确选择无悔的策略。证明该框架中的收敛速率变得非常简单,因为它们遵循适当已知的遗憾范围。我们的框架还引发了一些凸优化的特殊情况的许多新的一阶方法。
translated by 谷歌翻译
在本文中,我们解决了普通游戏中无遗憾的学习问题。具体而言,我们提供了一种简单实用的算法,实现了固定的阶梯大小的恒定遗憾。随着阶梯大小的增加,我们的算法的累积遗憾可被线性降低。我们的调查结果离开了现行范式,即消失的阶梯尺寸是迄今为止所有最先进的方法的低遗憾的先决条件。通过定义我们称之为Clairvoyant乘法权重更新(CMWU)的小说算法,从此范例转移到此范式。 CMWU是配备有精神模型的乘法权重更新(MWU),其在下一个时期中的系统状态有关系统的状态。每个代理记录其混合策略,即它对在下一期间在下一期间播放的信念,在此共享心理模型中,在此共享心理模型中使用MWU内部更新而没有对实际行为的任何改变,直到它平衡,从而标记其与第二天的真实结果一致。然后,只有那个代理在现实世界中采取行动,有效地在第二天的系统状态的“全面知识”,即它们是克莱师。CMWU有效充当MWU一天展望,实现有界遗憾。在技术水平,我们建立了任何选择的阶梯大小的自我一致的心理模型,并在其唯一性和线性时间计算的阶梯大小上提供界限收缩映射参数。我们的论点超越正常的游戏,几乎没有努力。
translated by 谷歌翻译
我们展示了一种新颖的虚构播放动态变种,将经典虚拟游戏与Q学习进行随机游戏,分析其在双球零点随机游戏中的收敛性。我们的动态涉及在对手战略上形成信仰的球员以及他们自己的延续支付(Q-Function),并通过使用估计的延续收益来扮演贪婪的最佳回应。玩家从对对手行动的观察开始更新他们的信仰。学习动态的一个关键属性是,更新Q函数的信念发生在较慢的时间上,而不是对策略的信念的更新。我们在基于模型和无模式的情况下(不了解播放器支付功能和国家过渡概率),对策略的信念会聚到零和随机游戏的固定混合纳什均衡。
translated by 谷歌翻译
我们在无限地平线上享受多智能经纪增强学习(Marl)零汇率马尔可夫游戏。我们专注于分散的Marl的实用性但具有挑战性的环境,其中代理人在没有集中式控制员的情况下做出决定,但仅根据自己的收益和当地行动进行了协调。代理商不需要观察对手的行为或收益,可能甚至不忘记对手的存在,也不得意识到基础游戏的零金额结构,该环境也称为学习文学中的彻底解散游戏。在本文中,我们开发了一种彻底的解耦Q学习动态,既合理和收敛则:当对手遵循渐近静止战略时,学习动态会收敛于对对手战略的最佳反应;当两个代理采用学习动态时,它们会收敛到游戏的纳什均衡。这种分散的环境中的关键挑战是从代理商的角度来看环境的非公平性,因为她自己的回报和系统演变都取决于其他代理人的行为,每个代理商同时和独立地互补她的政策。要解决此问题,我们开发了两个时间尺度的学习动态,每个代理会更新她的本地Q函数和value函数估计,后者在较慢的时间内发生。
translated by 谷歌翻译
我们研究了在两人零和马尔可夫游戏中找到NASH平衡的问题。由于其作为最小值优化程序的表述,解决该问题的自然方法是以交替的方式对每个玩家进行梯度下降/上升。但是,由于基本目标函数的非跨性别/非障碍性,该方法的理论理解是有限的。在我们的论文中,我们考虑解决马尔可夫游戏的熵登记变体。正则化将结构引入了优化景观中,从而使解决方案更加可识别,并允许更有效地解决问题。我们的主要贡献是表明,在正则化参数的正确选择下,梯度下降算法会收敛到原始未注册问题的NASH平衡。我们明确表征了我们算法的最后一个迭代的有限时间性能,该算法的梯度下降上升算法的现有收敛界限大大改善了而没有正则化。最后,我们通过数值模拟来补充分析,以说明算法的加速收敛性。
translated by 谷歌翻译