语义细分对于使自动驾驶车辆自动驾驶至关重要,从而使他们能够通过将单个像素分配给已知类别来理解周围环境。但是,它可以根据用户汽车收集的明智数据运行;因此,保护​​客户的隐私成为主要问题。出于类似的原因,最近将联邦学习作为一种新的机器学习范式引入,旨在学习全球模型,同时保留隐私并利用数百万个远程设备的数据。尽管在这个主题上进行了几项努力,但尚未明确解决语义细分中联合学习在迄今为止驾驶的挑战。为了填补这一空白,我们提出了FedDrive,这是一个由三个设置和两个数据集组成的新基准,其中包含了统计异质性和域概括的现实世界挑战。我们通过深入的分析基于联合学习文献的最新算法,将它们与样式转移方法相结合以提高其概括能力。我们证明,正确处理标准化统计数据对于应对上述挑战至关重要。此外,在处理重大外观变化时,样式转移会提高性能。官方网站:https://feddrive.github.io。
translated by 谷歌翻译
在联邦设置中接受培训的模型通常会遭受降解的表演,并且在概括方面失败,尤其是在面对异质场景时。在这项工作中,我们通过损失和黑森特征光谱的几何形状的镜头来研究这种行为,将模型缺乏概括能力与溶液的清晰度联系起来。通过先前的研究将损失表面和概括差距连接起来的动机,我们表明i)在本地培训客户,以清晰感最小化(SAM)或其自适应版本(ASAM)和II)平均随机重量(SWA)服务器端可以基本上改善联合学习的概括,并帮助弥合差距,以中央集权模型。通过在具有均匀损失均匀损失的社区中寻求参数,该模型会收敛于平坦的最小值及其泛化,从而在均质和异质情况下都显着改善。经验结果证明了这些优化器在各种基准视觉数据集(例如CIFAR10/100,Landmarks-User-160K,IDDA)和任务(大规模分类,语义分割,域概括)中的有效性。
translated by 谷歌翻译
联合学习是一种在不违反隐私限制的情况下对分布式数据集进行统计模型培训统计模型的最新方法。通过共享模型而不是客户和服务器之间的数据来保留数据位置原则。这带来了许多优势,但也带来了新的挑战。在本报告中,我们探讨了这个新的研究领域,并执行了几项实验,以加深我们对这些挑战的理解以及不同的问题设置如何影响最终模型的性能。最后,我们为这些挑战之一提供了一种新颖的方法,并将其与文献中的其他方法进行了比较。
translated by 谷歌翻译
联邦学习(FL)是一种分布式学习方法,它为医学机构提供了在全球模型中合作的前景,同时保留患者的隐私。尽管大多数医疗中心执行类似的医学成像任务,但它们的差异(例如专业,患者数量和设备)导致了独特的数据分布。数据异质性对FL和本地模型的个性化构成了挑战。在这项工作中,我们研究了FL生产中间半全球模型的一种自适应分层聚类方法,因此具有相似数据分布的客户有机会形成更专业的模型。我们的方法形成了几个群集,这些集群由具有最相似数据分布的客户端组成;然后,每个集群继续分开训练。在集群中,我们使用元学习来改善参与者模型的个性化。我们通过评估我们在HAM10K数据集上的建议方法和极端异质数据分布的HAM10K数据集上的我们提出的方法,将聚类方法与经典的FedAvg和集中式培训进行比较。我们的实验表明,与标准的FL方法相比,分类精度相比,异质分布的性能显着提高。此外,我们表明,如果在群集中应用,则模型会更快地收敛,并且仅使用一小部分数据,却优于集中式培训。
translated by 谷歌翻译
联合学习(FL)是一种新兴技术,用于协作训练全球机器学习模型,同时将数据局限于用户设备。FL实施实施的主要障碍是用户之间的非独立且相同的(非IID)数据分布,这会减慢收敛性和降低性能。为了解决这个基本问题,我们提出了一种方法(comfed),以增强客户端和服务器侧的整个培训过程。舒适的关键思想是同时利用客户端变量减少技术来促进服务器聚合和全局自适应更新技术以加速学习。我们在CIFAR-10分类任务上的实验表明,Comfed可以改善专用于非IID数据的最新算法。
translated by 谷歌翻译
联邦学习(FL)试图在本地客户端分发模型培训,而无需在集中式数据中心收集数据,从而消除了数据私人关系问题。 FL的一个主要挑战是数据异质性(每个客户的数据分布可能会有所不同),因为它可能导致本地客户的权重差异并减慢全球融合。当前专为数据异质性设计的SOTA FL方法通常会施加正则化以限制非IID数据的影响,并且是状态算法,即它们随着时间的推移维持局部统计数据。尽管有效,但这些方法只能用于FL的特殊情况,仅涉及少数可靠的客户。对于fl的更典型应用,客户端数量很大(例如,边缘设备和移动应用程序),这些方法无法应用,激发了对任何可用于任何数量客户端使用的无状态方法的无状态方法的需求。我们得出了一阶梯度正则化,以惩罚由于本地数据异质性而导致的本地更新不一致。具体而言,为了减轻权重差异,我们将全局数据分布的一阶近似引入本地目标,该目标凭直觉地惩罚了与全局更新相反方向的更新。最终结果是一种无状态的FL算法,可实现1)在非IID数据分布下,比SOTA方法明显更快地收敛(即较少的通信回合)和2)总体融合性能更高。重要的是,我们的方法不会对客户大小施加不切实际的限制,从而可以从大多数FL应用程序中向大量客户学习。
translated by 谷歌翻译
Federated learning is a popular paradigm for machine learning. Ideally, federated learning works best when all clients share a similar data distribution. However, it is not always the case in the real world. Therefore, the topic of federated learning on heterogeneous data has gained more and more effort from both academia and industry. In this project, we first do extensive experiments to show how data skew and quantity skew will affect the performance of state-of-art federated learning algorithms. Then we propose a new algorithm FedMix which adjusts existing federated learning algorithms and we show its performance. We find that existing state-of-art algorithms such as FedProx and FedNova do not have a significant improvement in all testing cases. But by testing the existing and new algorithms, it seems that tweaking the client side is more effective than tweaking the server side.
translated by 谷歌翻译
联合学习是一种新颖的框架,允许多个设备或机构在保留其私有数据时协同地培训机器学习模型。这种分散的方法易于遭受数据统计异质性的后果,无论是在不同的实体还是随着时间的推移,这可能导致缺乏会聚。为避免此类问题,在过去几年中提出了不同的方法。然而,数据可能在许多不同的方式中是异构的,并且当前的建议并不总是确定他们正在考虑的异质性的那种。在这项工作中,我们正式地分类数据统计异质性,并审查能够面对它的最显着的学习策略。与此同时,我们介绍了其他机器学习框架的方法,例如持续学习,也处理数据异质性,并且可以很容易地适应联邦学习设置。
translated by 谷歌翻译
联合学习(FL)是一个分散的学习范式,其中多个客户在不集中其本地数据的情况下进行培训深度学习模型,因此保留数据隐私。现实世界中的应用程序通常涉及在不同客户端的数据集上进行分发转换,这损害了客户从各自的数据分布中看不见样本的概括能力。在这项工作中,我们解决了最近提出的功能转移问题,其中客户具有不同的功能分布,而标签分布相同。我们建议联邦代表性扩大(FRAUG)来解决这个实用且具有挑战性的问题。我们的方法在嵌入空间中生成合成客户端特定的样本,以增加通常小客户端数据集。为此,我们训练一个共享的生成模型,以融合客户从其不同功能分布中学习的知识。该发电机合成了客户端 - 不合时式嵌入,然后通过表示转换网络(RTNET)将其局部转换为特定于客户端的嵌入。通过将知识转移到客户端,生成的嵌入式作为客户模型的正常化程序,并减少对本地原始数据集的过度拟合,从而改善了概括。我们对公共基准和现实医学数据集的经验评估证明了该方法的有效性,该方法在包括Partialfed和FedBN在内的非IID特征的当前最新FL方法大大优于最新的FL方法。
translated by 谷歌翻译
联合学习(FL)是一个杰出的框架,可以通过融合本地,分散的模型来确保用户隐私来培训集中式模型。在这种情况下,一个主要障碍是数据异质性,即每个客户具有非相同和独立分布(非IID)数据。这类似于域概括(DG)的上下文,在该上下文中,每个客户端都可以视为不同的域。但是,尽管DG中的许多方法从算法的角度来解决数据异质性,但最近的证据表明,数据增强可以诱导相等或更高的性能。在这种连接的激励下,我们介绍了受欢迎的DG算法的联合版本,并表明,通过应用适当的数据增强,我们可以在联合环境中减轻数据异质性,并为看不见的客户获得更高的准确性。配备了数据增强功能,我们甚至可以使用最基本的联邦平均算法实现最先进的性能,并具有更稀疏的沟通。
translated by 谷歌翻译
使用联合学习(FL)协作培训模型的多个医疗机构已成为最大化数据驱动模型的潜力的有希望的解决方案,但医学图像中的非独立性和相同分布的(非IID)数据仍然是一个突出的挑战在真实的练习中。由不同扫描仪或协议引起的特征异质性在本地(客户端)和全局(服务器)优化中引入了学习过程中的漂移,这损害了收敛以及模型性能。许多以前的作品已经尝试通过在本地或全球范围内解决漂移来解决非IID问题,但如何共同解决两个基本耦合的漂移仍然不清楚。在这项工作中,我们专注于处理本地和全球漂移,并介绍一个名为HARMOFL的新协调框架。首先,我们建议通过将变换到频域的图像的幅度归一化以模仿统一的成像设置来减轻本地更新漂移,以便在跨本地客户端生成统一的特征空间。其次,基于谐波功能,我们设计了引导每个本地模型的客户重量扰动,以达到平坦的最佳状态,其中局部最佳解决方案的邻域面积具有均匀低损耗。如果没有任何额外的沟通成本,则扰动协助全局模型通过聚合几个局部平面OptimA来优化融合的最佳解决方案。理论上,我们已经分析了所提出的方法和经验上对三种医学图像分类和分割任务进行了广泛的实验,表明HARMOFL优于一系列具有有前途的收敛行为的最近最先进的方法。
translated by 谷歌翻译
自从联合学习(FL)被引入具有隐私保护的分散学习技术以来,分布式数据的统计异质性是实现FL应用中实现稳健性能和稳定收敛性的主要障碍。已经研究了模型个性化方法来克服这个问题。但是,现有的方法主要是在完全标记的数据的先决条件下,这在实践中是不现实的,由于需要专业知识。由部分标记的条件引起的主要问题是,标记数据不足的客户可能会遭受不公平的性能增益,因为他们缺乏足够的本地分销见解来自定义全球模型。为了解决这个问题,1)我们提出了一个新型的个性化的半监督学习范式,该范式允许部分标记或未标记的客户寻求与数据相关的客户(助手代理)的标签辅助,从而增强他们对本地数据的认识; 2)基于此范式,我们设计了一个基于不确定性的数据关系度量,以确保选定的帮助者可以提供值得信赖的伪标签,而不是误导当地培训; 3)为了减轻助手搜索引入的网络过载,我们进一步开发了助手选择协议,以实现有效的绩效牺牲的有效沟通。实验表明,与其他具有部分标记数据的相关作品相比,我们提出的方法可以获得卓越的性能和更稳定的收敛性,尤其是在高度异质的环境中。
translated by 谷歌翻译
当客户具有不同的数据分布时,最新的联合学习方法的性能比其集中式同行差得多。对于神经网络,即使集中式SGD可以轻松找到同时执行所有客户端的解决方案,当前联合优化方法也无法收敛到可比的解决方案。我们表明,这种性能差异很大程度上可以归因于非概念性提出的优化挑战。具体来说,我们发现网络的早期层确实学习了有用的功能,但是最后一层无法使用它们。也就是说,适用于此非凸问题的联合优化扭曲了最终层的学习。利用这一观察结果,我们提出了一个火车征征训练(TCT)程序来避开此问题:首先,使用现成方法(例如FedAvg)学习功能;然后,优化从网络的经验神经切线核近似获得的共透性问题。当客户具有不同的数据时,我们的技术可在FMNIST上的准确性提高高达36%,而CIFAR10的准确性提高了 +37%。
translated by 谷歌翻译
将联合学习(FL)模型概括为未IID数据的解读客户是一个至关重要的主题,但到目前为止未解决。在这项工作中,我们建议从新的因果角度来解决这个问题。具体而言,我们形成培训结构因果模型(SCM),以解释模型泛化在分布式学习范式中的挑战。基于此,我们介绍了一种使用测试特定和势头批量标准化(TSMobn)的简单且有效的方法来推广到测试客户端。通过制定另一个测试SCM来说,给出了因果分析,并证明了TSMobn的关键因素是特定的特定于特定的统计数据(即,均值和方差)。这种统计数据可以被视为因果干预的代理变量。此外,通过考虑FL中的泛化界,我们表明我们的TSMobn方法可以减少训练和测试特征分布之间的分歧,这实现了比标准模型测试更低的泛化差距。我们广泛的实验评估表明,在具有各种类型的特征分布和客户端数量的三个数据集上对看不见的客户端概括的显着改进。值得注意的是,我们的建议方法可以灵活地应用于不同的最先进的联邦学习算法,并且与现有的域泛化方法正交。
translated by 谷歌翻译
联邦学习(FL)是利用属于患者,人,公司或行业的敏感数据的合适解决方案,这些数据在刚性隐私约束下工作的难题。 FL主要或部分地支持数据隐私和安全问题,并提供促进促进多个边缘设备或组织的模型问题的替代方案,以使用许多本地数据培训全局模型而不具有它们。由其分布式自然引起的FL的非IID数据具有显着的性能下降和稳定性偏斜。本文介绍了一种新颖的方法,通过增强图像动态平衡客户端的数据分布,以解决FL的非IID数据问题。介绍的方法非常稳定模型培训,并将模型的测试精度从83.22%提高到89.43%,对于高度IID FL设定中的胸部X射线图像的多胸疾病检测。 IID,非IID和非IID的结果,联合培训表明,该方法可能有助于鼓励组织或研究人员开发更好的系统,以获得与数据隐私的数据的价值不仅适用于医疗保健,而且领域。
translated by 谷歌翻译
联合学习(FL)根据多个本地客户端协同聚合共享全球模型,同时保持培训数据分散以保护数据隐私。但是,标准的FL方法忽略了嘈杂的客户问题,这可能会损害聚合模型的整体性能。在本文中,我们首先分析了嘈杂的客户声明,然后用不同的噪声分布模型噪声客户端(例如,Bernoulli和截断的高斯分布)。要使用嘈杂的客户,我们提出了一个简单但有效的FL框架,名为联邦嘈杂的客户学习(FED-NCL),它是一个即插即用算法,并包含两个主要组件:动态的数据质量测量(DQM)量化每个参与客户端的数据质量,以及噪声鲁棒聚合(NRA),通过共同考虑本地训练数据和每个客户端的数据质量来自适应地聚合每个客户端的本地模型。我们的FED-NCL可以轻松应用于任何标准的流行流以处理嘈杂的客户端问题。各种数据集的实验结果表明,我们的算法提高了具有嘈杂客户端的不同现实系统的性能。
translated by 谷歌翻译
在大多数有关联合学习(FL)的文献中,神经网络都是随机重量初始化的。在本文中,我们介绍了一项关于预训练对FL的影响的实证研究。具体而言,我们旨在调查当客户的分散数据是非IID时,预训练是否可以减轻急剧精度下降。我们专注于FedAvg,这是基本和最广泛使用的FL算法。我们发现,在非IID数据下,预培训确实在很大程度上缩小了FedAvg和集中学习之间的差距,但这并不是由于减轻了FedAvg的本地培训中众所周知的模型漂移问题。相反,预培训如何通过使FedAvg的全球聚合更加稳定来帮助FedAvg。当使用真实数据的预训练对于FL不可行时,我们提出了一种新型的方法,可以预先培训合成数据。在各种图像数据集(包括用于分割的一个)上,我们使用合成预训练的方法导致了显着的增益,这实质上是为扩大现实世界应用程序的联合学习而迈出的关键步骤。
translated by 谷歌翻译
一方(服务器)培训的检测模型可能会在分发给其他用户(客户)时面临严重的性能降解。例如,在自主驾驶场景中,不同的驾驶环境可能会带来明显的域移动,从而导致模型预测的偏见。近年来出现的联合学习可以使多方合作培训无需泄漏客户数据。在本文中,我们专注于特殊的跨域场景,其中服务器包含大规模数据,并且多个客户端仅包含少量数据。同时,客户之间的数据分布存在差异。在这种情况下,传统的联合学习技术不能考虑到所有参与者的全球知识和特定客户的个性化知识的学习。为了弥补这一限制,我们提出了一个跨域联合对象检测框架,名为FedOD。为了同时学习不同领域的全球知识和个性化知识,拟议的框架首先执行联合培训,以通过多教老师蒸馏获得公共全球汇总模型,并将汇总模型发送给每个客户端以供应其个性化的个性化模型本地模型。经过几轮沟通后,在每个客户端,我们可以对公共全球模型和个性化本地模型进行加权合奏推理。通过合奏,客户端模型的概括性能可以胜过具有相同参数量表的单个模型。我们建立了一个联合对象检测数据集,该数据集具有基于多个公共自主驾驶数据集的显着背景差异和实例差异,然后在数据集上进行大量实验。实验结果验证了所提出的方法的有效性。
translated by 谷歌翻译
Federated Learning (FL) allows training machine learning models in privacy-constrained scenarios by enabling the cooperation of edge devices without requiring local data sharing. This approach raises several challenges due to the different statistical distribution of the local datasets and the clients' computational heterogeneity. In particular, the presence of highly non-i.i.d. data severely impairs both the performance of the trained neural network and its convergence rate, increasing the number of communication rounds requested to reach a performance comparable to that of the centralized scenario. As a solution, we propose FedSeq, a novel framework leveraging the sequential training of subgroups of heterogeneous clients, i.e. superclients, to emulate the centralized paradigm in a privacy-compliant way. Given a fixed budget of communication rounds, we show that FedSeq outperforms or match several state-of-the-art federated algorithms in terms of final performance and speed of convergence. Finally, our method can be easily integrated with other approaches available in the literature. Empirical results show that combining existing algorithms with FedSeq further improves its final performance and convergence speed. We test our method on CIFAR-10 and CIFAR-100 and prove its effectiveness in both i.i.d. and non-i.i.d. scenarios.
translated by 谷歌翻译
在联合学习(FL)中,模型性能通常遭受数据异质性引起的客户漂移,而主流工作则专注于纠正客户漂移。我们提出了一种名为Virtual同质性学习(VHL)的不同方法,以直接“纠正”数据异质性。尤其是,VHL使用一个虚拟均匀的数据集进行FL,该数据集精心制作以满足两个条件:不包含私人信息和可分开的情况。虚拟数据集可以从跨客户端共享的纯噪声中生成,旨在校准异质客户的功能。从理论上讲,我们证明VHL可以在自然分布上实现可证明的概括性能。从经验上讲,我们证明了VHL赋予FL具有巨大改善的收敛速度和概括性能。VHL是使用虚拟数据集解决数据异质性的首次尝试,为FL提供了新的有效手段。
translated by 谷歌翻译