在大多数有关联合学习(FL)的文献中,神经网络都是随机重量初始化的。在本文中,我们介绍了一项关于预训练对FL的影响的实证研究。具体而言,我们旨在调查当客户的分散数据是非IID时,预训练是否可以减轻急剧精度下降。我们专注于FedAvg,这是基本和最广泛使用的FL算法。我们发现,在非IID数据下,预培训确实在很大程度上缩小了FedAvg和集中学习之间的差距,但这并不是由于减轻了FedAvg的本地培训中众所周知的模型漂移问题。相反,预培训如何通过使FedAvg的全球聚合更加稳定来帮助FedAvg。当使用真实数据的预训练对于FL不可行时,我们提出了一种新型的方法,可以预先培训合成数据。在各种图像数据集(包括用于分割的一个)上,我们使用合成预训练的方法导致了显着的增益,这实质上是为扩大现实世界应用程序的联合学习而迈出的关键步骤。
translated by 谷歌翻译
Federated Learning有望在不访问数据的情况下与多个客户进行协作培训模型的能力,但是当客户的数据分布彼此差异时脆弱。这种差异进一步导致了困境:“我们是否应该优先考虑学习模型的通用性能(用于服务器的将来使用)或其个性化绩效(对于每个客户端)?”这两个看似竞争的目标使社区分裂了专注于一个或另一个,但在本文中,我们表明可以同时实现这两者。具体而言,我们提出了一个新颖的联邦学习框架,该框架将模型的双重职责与两个预测任务相结合。一方面,我们介绍了一个损失家族,这些损失家庭对非相同的班级分布,使客户能够培训一个通用的预测指标,并以一致的目标培训。另一方面,我们将个性化预测变量作为一种轻巧的自适应模块,以最大程度地减少每个客户在通用预测指标上的经验风险。借助我们将联合强大的脱钩(FED-ROD)命名的两个损失的两次挑战框架,学识渊博的模型可以同时实现最先进的通用和个性化的性能,从而实质上弥补了这两个任务。
translated by 谷歌翻译
经常引用联合学习的挑战是数据异质性的存在 - 不同客户的数据可能遵循非常不同的分布。已经提出了几种联合优化方法来应对这些挑战。在文献中,经验评估通常从随机初始化开始联合培训。但是,在联合学习的许多实际应用中,服务器可以访问培训任务的代理数据,该数据可用于在开始联合培训之前用于预训练模型。我们从经验上研究了使用四个常见联合学习基准数据集从联邦学习中的预训练模型开始的影响。毫不奇怪,从预先训练的模型开始,比从随机初始化开始时,缩短了达到目标错误率所需的训练时间,并使训练更准确的模型(最高40 \%)。令人惊讶的是,我们还发现,从预先训练的初始化开始联合培训时,数据异质性的效果不那么重要。相反,从预先训练的模型开始时,使用服务器上的自适应优化器(例如\ textsc {fedadam})始终导致最佳准确性。我们建议未来提出和评估联合优化方法的工作在开始随机和预训练的初始化时考虑性能。我们还认为,这项研究提出了几个问题,以进一步了解异质性在联合优化中的作用。
translated by 谷歌翻译
在联邦设置中接受培训的模型通常会遭受降解的表演,并且在概括方面失败,尤其是在面对异质场景时。在这项工作中,我们通过损失和黑森特征光谱的几何形状的镜头来研究这种行为,将模型缺乏概括能力与溶液的清晰度联系起来。通过先前的研究将损失表面和概括差距连接起来的动机,我们表明i)在本地培训客户,以清晰感最小化(SAM)或其自适应版本(ASAM)和II)平均随机重量(SWA)服务器端可以基本上改善联合学习的概括,并帮助弥合差距,以中央集权模型。通过在具有均匀损失均匀损失的社区中寻求参数,该模型会收敛于平坦的最小值及其泛化,从而在均质和异质情况下都显着改善。经验结果证明了这些优化器在各种基准视觉数据集(例如CIFAR10/100,Landmarks-User-160K,IDDA)和任务(大规模分类,语义分割,域概括)中的有效性。
translated by 谷歌翻译
联合学习(FL)是分布式学习范例,可以从边缘设备上的分散数据集中学习全局或个性化模型。然而,在计算机视觉域中,由于统一的流行框架缺乏探索,FL的模型性能远远落后于集中培训。在诸如物体检测和图像分割之类的高级计算机视觉任务中,FL很少有效地说明。为了弥合差距并促进电脑视觉任务的流动,在这项工作中,我们提出了一个联邦学习库和基准框架,命名为FEDCV,评估了三个最具代表性的计算机视觉任务:图像分类,图像分割,和物体检测。我们提供非I.I.D。基准测试数据集,模型和各种参考FL算法。我们的基准研究表明,存在多种挑战值得未来的探索:集中式培训技巧可能不会直接申请fl;非i.i.d。 DataSet实际上将模型精度降级到不同的任务中的某种程度;给出了联合培训的系统效率,具有挑战性,鉴于大量参数和每个客户端记忆成本。我们认为,这种图书馆和基准以及可比的评估设置是必要的,以便在计算机视觉任务中进行有意义的进展。 Fedcv公开可用:https://github.com/fedml-ai/fedcv。
translated by 谷歌翻译
联合学习(FL)是一种新兴技术,用于协作训练全球机器学习模型,同时将数据局限于用户设备。FL实施实施的主要障碍是用户之间的非独立且相同的(非IID)数据分布,这会减慢收敛性和降低性能。为了解决这个基本问题,我们提出了一种方法(comfed),以增强客户端和服务器侧的整个培训过程。舒适的关键思想是同时利用客户端变量减少技术来促进服务器聚合和全局自适应更新技术以加速学习。我们在CIFAR-10分类任务上的实验表明,Comfed可以改善专用于非IID数据的最新算法。
translated by 谷歌翻译
Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: modelcontrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties,i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.
translated by 谷歌翻译
启用摄像头的移动设备的无处不在导致在边缘生产大量未标记的视频数据。尽管已经提出了各种自我监督学习(SSL)方法来收集其潜在的时空表征,以进行特定于任务的培训,但实际挑战包括隐私问题和沟通成本,可以阻止SSL在大规模上部署。为了减轻这些问题,我们建议将联合学习(FL)用于视频SSL的任务。在这项工作中,我们评估了当前最新ART(SOTA)视频-SSL技术的性能,并确定其在与Kinetics-400数据集模拟的大规模FL设置中集成到大规模的FL设置时的缺陷。我们遵循,为视频(称为FedVSSL)提出了一个新颖的Federated SSL框架,该框架集成了不同的聚合策略和部分重量更新。广泛的实验证明了FEDVSSL的有效性和意义,因为它在UCF-101上优于下游检索任务的集中式SOTA,而HMDB-51的效率为6.66%。
translated by 谷歌翻译
An oft-cited open problem of federated learning is the existence of data heterogeneity at the clients. One pathway to understanding the drastic accuracy drop in federated learning is by scrutinizing the behavior of the clients' deep models on data with different levels of "difficulty", which has been left unaddressed. In this paper, we investigate a different and rarely studied dimension of FL: ordered learning. Specifically, we aim to investigate how ordered learning principles can contribute to alleviating the heterogeneity effects in FL. We present theoretical analysis and conduct extensive empirical studies on the efficacy of orderings spanning three kinds of learning: curriculum, anti-curriculum, and random curriculum. We find that curriculum learning largely alleviates non-IIDness. Interestingly, the more disparate the data distributions across clients the more they benefit from ordered learning. We provide analysis explaining this phenomenon, specifically indicating how curriculum training appears to make the objective landscape progressively less convex, suggesting fast converging iterations at the beginning of the training procedure. We derive quantitative results of convergence for both convex and nonconvex objectives by modeling the curriculum training on federated devices as local SGD with locally biased stochastic gradients. Also, inspired by ordered learning, we propose a novel client selection technique that benefits from the real-world disparity in the clients. Our proposed approach to client selection has a synergic effect when applied together with ordered learning in FL.
translated by 谷歌翻译
联合学习(FL)是一种机器学习范式,允许分散的客户在不共享其私人数据的情况下进行协作学习。但是,过度的计算和沟通要求对当前的FL框架构成挑战,尤其是在训练大型模型时。为了防止这些问题阻碍FL系统的部署,我们提出了一个轻巧的框架,客户共同学习融合由多个固定预训练的模型生成的表示形式,而不是从SCRATCH培训大型模型。这通过考虑如何从预先训练的模型中捕获更多特定于客户的信息,并共同提高每个客户利用这些现成模型的能力,从而导致我们解决了一个更实用的FL问题。在这项工作中,我们设计了一种联合原型对比度学习(FEDPCL)方法,该方法通过其类原型共享客户的知识,并以原型对比度方式构建特定于客户的表示。共享原型而不是可学习的模型参数可以使每个客户以个性化的方式融合表示表示,同时以紧凑的形式保持共享知识以进行有效的通信。我们在轻量级框架中对拟议的FEDPCL进行了彻底的评估,以测量和可视化其在流行的FL数据集上融合各种预训练模型的能力。
translated by 谷歌翻译
当客户具有不同的数据分布时,最新的联合学习方法的性能比其集中式同行差得多。对于神经网络,即使集中式SGD可以轻松找到同时执行所有客户端的解决方案,当前联合优化方法也无法收敛到可比的解决方案。我们表明,这种性能差异很大程度上可以归因于非概念性提出的优化挑战。具体来说,我们发现网络的早期层确实学习了有用的功能,但是最后一层无法使用它们。也就是说,适用于此非凸问题的联合优化扭曲了最终层的学习。利用这一观察结果,我们提出了一个火车征征训练(TCT)程序来避开此问题:首先,使用现成方法(例如FedAvg)学习功能;然后,优化从网络的经验神经切线核近似获得的共透性问题。当客户具有不同的数据时,我们的技术可在FMNIST上的准确性提高高达36%,而CIFAR10的准确性提高了 +37%。
translated by 谷歌翻译
联合学习是一种在不违反隐私限制的情况下对分布式数据集进行统计模型培训统计模型的最新方法。通过共享模型而不是客户和服务器之间的数据来保留数据位置原则。这带来了许多优势,但也带来了新的挑战。在本报告中,我们探讨了这个新的研究领域,并执行了几项实验,以加深我们对这些挑战的理解以及不同的问题设置如何影响最终模型的性能。最后,我们为这些挑战之一提供了一种新颖的方法,并将其与文献中的其他方法进行了比较。
translated by 谷歌翻译
由于参与客户的异构特征,联邦学习往往受到不稳定和缓慢的收敛。当客户参与比率低时,这种趋势加剧了,因为从每个轮的客户收集的信息容易更加不一致。为了解决挑战,我们提出了一种新的联合学习框架,这提高了服务器端聚合步骤的稳定性,这是通过将客户端发送与全局梯度估计的加速模型来引导本地梯度更新来实现的。我们的算法自然地聚合并将全局更新信息与没有额外的通信成本的参与者传达,并且不需要将过去的模型存储在客户端中。我们还规范了本地更新,以进一步降低偏差并提高本地更新的稳定性。我们根据各种设置执行了关于实际数据的全面实证研究,与最先进的方法相比,在准确性和通信效率方面表现出了拟议方法的显着性能,特别是具有低客户参与率。我们的代码可在https://github.com/ninigapa0 / fedagm获得
translated by 谷歌翻译
Federated learning is a distributed machine learning paradigm in which a large number of clients coordinate with a central server to learn a model without sharing their own training data. Standard federated optimization methods such as Federated Averaging (FEDAVG) are often difficult to tune and exhibit unfavorable convergence behavior. In non-federated settings, adaptive optimization methods have had notable success in combating such issues. In this work, we propose federated versions of adaptive optimizers, including ADAGRAD, ADAM, and YOGI, and analyze their convergence in the presence of heterogeneous data for general nonconvex settings. Our results highlight the interplay between client heterogeneity and communication efficiency. We also perform extensive experiments on these methods and show that the use of adaptive optimizers can significantly improve the performance of federated learning.
translated by 谷歌翻译
联合学习(FL)是一个有希望的策略,用于使用客户端(即边缘设备)的网络进行隐私保留,分布式学习。然而,客户之间的数据分布通常是非IID的,使得有效优化困难。为了缓解这个问题,许多流行算法专注于通过引入各种近似术语,一些产生可观的计算和/或内存开销来减轻客户端跨客户端的影响,以限制关于全局模型的本地更新。相反,我们考虑重新思考的解决方案,以重点关注局部学习一般性而不是近端限制。为此,我们首先提出了一项系统的研究,通过二阶指标通知,更好地了解FL中的算法效果。有趣的是,我们发现标准的正则化方法令人惊讶的是减轻数据异质性效应的强烈表现者。根据我们的调查结果,我们进一步提出了一种简单有效的方法,努力克服数据异质性和先前方法的陷阱。 FedAlign在各种设置中使用最先进的FL方法实现了竞争准确性,同时最大限度地减少计算和内存开销。代码将公开。
translated by 谷歌翻译
The statistical heterogeneity of the non-independent and identically distributed (non-IID) data in local clients significantly limits the performance of federated learning. Previous attempts like FedProx, SCAFFOLD, MOON, FedNova and FedDyn resort to an optimization perspective, which requires an auxiliary term or re-weights local updates to calibrate the learning bias or the objective inconsistency. However, in addition to previous explorations for improvement in federated averaging, our analysis shows that another critical bottleneck is the poorer optima of client models in more heterogeneous conditions. We thus introduce a data-driven approach called FedSkip to improve the client optima by periodically skipping federated averaging and scattering local models to the cross devices. We provide theoretical analysis of the possible benefit from FedSkip and conduct extensive experiments on a range of datasets to demonstrate that FedSkip achieves much higher accuracy, better aggregation efficiency and competing communication efficiency. Source code is available at: https://github.com/MediaBrain-SJTU/FedSkip.
translated by 谷歌翻译
联合学习的一个关键挑战是客户之间的数据异质性和失衡,这导致本地网络与全球模型不稳定的融合之间的不一致。为了减轻局限性,我们提出了一种新颖的建筑正则化技术,该技术通过在几个不同级别上接管本地和全球子网,在每个本地模型中构建多个辅助分支通过在线知识蒸馏。该提出的技术即使在非IID环境中也可以有效地鲁棒化,并且适用于各种联合学习框架,而不会产生额外的沟通成本。与现有方法相比,我们进行了全面的经验研究,并在准确性和效率方面表现出显着的性能提高。源代码可在我们的项目页面上找到。
translated by 谷歌翻译
语义细分对于使自动驾驶车辆自动驾驶至关重要,从而使他们能够通过将单个像素分配给已知类别来理解周围环境。但是,它可以根据用户汽车收集的明智数据运行;因此,保护​​客户的隐私成为主要问题。出于类似的原因,最近将联邦学习作为一种新的机器学习范式引入,旨在学习全球模型,同时保留隐私并利用数百万个远程设备的数据。尽管在这个主题上进行了几项努力,但尚未明确解决语义细分中联合学习在迄今为止驾驶的挑战。为了填补这一空白,我们提出了FedDrive,这是一个由三个设置和两个数据集组成的新基准,其中包含了统计异质性和域概括的现实世界挑战。我们通过深入的分析基于联合学习文献的最新算法,将它们与样式转移方法相结合以提高其概括能力。我们证明,正确处理标准化统计数据对于应对上述挑战至关重要。此外,在处理重大外观变化时,样式转移会提高性能。官方网站:https://feddrive.github.io。
translated by 谷歌翻译
Federated Learning(FL)是一种流行的分散和保护隐私的机器学习(FL)框架,近年来一直受到广泛的研究关注。现有的大多数作品都集中在监督学习(SL)问题上,在这些问题上假定客户在服务器没有数据时携带标签的数据集。但是,在现实的情况下,由于缺乏专业知识和动力,客户通常无法在服务器托管少量标记数据的情况下标记其数据。因此,如何合理地利用服务器标记的数据和客户端的未标记数据至关重要。在本文中,我们提出了一种新的FL算法,称为FEDSEAL,以解决该半监督联邦学习(SSFL)问题。我们的算法利用自我安装的学习和互补的负面学习来提高客户对未标记数据无监督学习的准确性和效率,并在服务器方和客户方面进行了模型培训。我们对SSFL设置中的时尚摄影和CIFAR10数据集的实验结果验证了我们方法的有效性,该方法的效率超过了最先进的SSFL方法。
translated by 谷歌翻译
Modern mobile devices have access to a wealth of data suitable for learning models, which in turn can greatly improve the user experience on the device. For example, language models can improve speech recognition and text entry, and image models can automatically select good photos. However, this rich data is often privacy sensitive, large in quantity, or both, which may preclude logging to the data center and training there using conventional approaches. We advocate an alternative that leaves the training data distributed on the mobile devices, and learns a shared model by aggregating locally-computed updates. We term this decentralized approach Federated Learning.We present a practical method for the federated learning of deep networks based on iterative model averaging, and conduct an extensive empirical evaluation, considering five different model architectures and four datasets. These experiments demonstrate the approach is robust to the unbalanced and non-IID data distributions that are a defining characteristic of this setting. Communication costs are the principal constraint, and we show a reduction in required communication rounds by 10-100× as compared to synchronized stochastic gradient descent.
translated by 谷歌翻译