预先完成的操作涉及一个复杂且计算密集的优化过程,以确定发电机的承诺时间表和调度。优化过程是一个混合企业线性程序(MILP),也称为安全受限的单位承诺(SCUC)。独立的系统操作员(ISO)每天运行SCUC,并需要最先进的算法来加快流程。可以利用历史信息中的现有模式来减少SCUC模型,这可以节省大量时间。在本文中,研究了基于机器学习(ML)的分类方法,即逻辑回归,神经网络,随机森林和K-Nearest邻居,以减少SCUC模型。然后,使用可行性层(FL)和后处理技术来帮助ML,以确保高质量的解决方案。提出的方法在多个测试系统上进行了验证,即IEEE 24总线系统,IEEE-73总线系统,IEEE 118总线系统,500个总线系统和波兰2383-BUS系统。此外,使用可再生生成的改良IEEE 24总线系统,证明了随机SCUC(SSCUC)的模型降低。仿真结果证明了高训练的准确性,以确定承诺时间表,而FL和后处理确保ML预测不会导致溶液质量损失最小的可行解决方案。
translated by 谷歌翻译
安全限制的单位承诺(SCUC)用于电力系统的日期前一代调度是一个混合整数的线性编程问题,该问题是计算密集的。良好的热启动解决方案或减少SCUC模型可以节省大量的时间。在这项工作中,提出了一种新的方法来有效地利用机器学习(ML)来提供良好的起始解决方案和/或降低SCUC的问题大小。使用历史节点需求配置文件和各自的承诺计划提出和培训使用逻辑回归算法的ML模型。处理并分析ML输出以辅助SCUC。拟议的方法是在几个标准测试系统上验证的,即IEEE 24-Bus系统,IEEE 73总线系统,IEEE 118总线系统,合成南卡罗来纳500公交系统,以及波兰2383总线系统。仿真结果表明,来自所提出的机器学习模型的预测可以提供良好的热启动解决方案和/或减少SCUC中的变量数量和限制,以及解决方案质量的最小损耗,同时大大减少计算时间。
translated by 谷歌翻译
随着可再生于可再生能级的级别越来越多地对AC最佳功率流(AC OPF)进行数据驱动的方法的兴趣,以管理不确定性;然而,缺乏纪律的数据集创建和基准测试禁止在文献中的方法中进行了有用的比较。为了灌输置信度,模型必须能够可靠地预测跨各种操作条件的解决方案。本文开发了Julia和Python的OPF学习包,它使用计算上有效的方法来创建跨越AC OPF可行区域的广泛频谱的代表性数据集。负载配置文件从包含AC OPF可行集合的凸集均匀地采样。对于发现的每个不可行的点,通过使用宽松配方的性质,发现凸起的凸形集减少。该框架被示出为生成数据集,这些数据集更具代表性的整个可行性空间与文献中的传统技术,改善了机器学习模型性能。
translated by 谷歌翻译
Reliability Assessment Commitment (RAC) Optimization is increasingly important in grid operations due to larger shares of renewable generations in the generation mix and increased prediction errors. Independent System Operators (ISOs) also aim at using finer time granularities, longer time horizons, and possibly stochastic formulations for additional economic and reliability benefits. The goal of this paper is to address the computational challenges arising in extending the scope of RAC formulations. It presents RACLEARN that (1) uses Graph Neural Networks (GNN) to predict generator commitments and active line constraints, (2) associates a confidence value to each commitment prediction, (3) selects a subset of the high-confidence predictions, which are (4) repaired for feasibility, and (5) seeds a state-of-the-art optimization algorithm with the feasible predictions and the active constraints. Experimental results on exact RAC formulations used by the Midcontinent Independent System Operator (MISO) and an actual transmission network (8965 transmission lines, 6708 buses, 1890 generators, and 6262 load units) show that the RACLEARN framework can speed up RAC optimization by factors ranging from 2 to 4 with negligible loss in solution quality.
translated by 谷歌翻译
Algorithms that involve both forecasting and optimization are at the core of solutions to many difficult real-world problems, such as in supply chains (inventory optimization), traffic, and in the transition towards carbon-free energy generation in battery/load/production scheduling in sustainable energy systems. Typically, in these scenarios we want to solve an optimization problem that depends on unknown future values, which therefore need to be forecast. As both forecasting and optimization are difficult problems in their own right, relatively few research has been done in this area. This paper presents the findings of the ``IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling," held in 2021. We present a comparison and evaluation of the seven highest-ranked solutions in the competition, to provide researchers with a benchmark problem and to establish the state of the art for this benchmark, with the aim to foster and facilitate research in this area. The competition used data from the Monash Microgrid, as well as weather data and energy market data. It then focused on two main challenges: forecasting renewable energy production and demand, and obtaining an optimal schedule for the activities (lectures) and on-site batteries that lead to the lowest cost of energy. The most accurate forecasts were obtained by gradient-boosted tree and random forest models, and optimization was mostly performed using mixed integer linear and quadratic programming. The winning method predicted different scenarios and optimized over all scenarios jointly using a sample average approximation method.
translated by 谷歌翻译
在这项研究中,我们提出了一个深入的学习优化框架,以解决动态的混合企业计划。具体而言,我们开发了双向长期内存(LSTM)框架,可以及时向前和向后处理信息,以学习最佳解决方案,以解决顺序决策问题。我们展示了我们在预测单项电容批号问题(CLSP)的最佳决策方面的方法,其中二进制变量表示是否在一个时期内产生。由于问题的动态性质,可以将CLSP视为序列标记任务,在该任务中,复发性神经网络可以捕获问题的时间动力学。计算结果表明,我们的LSTM优化(LSTM-OPT)框架大大减少了基准CLSP问题的解决方案时间,而没有太大的可行性和最佳性。例如,对于240,000多个测试实例,在85 \%级别的预测平均将CPLEX溶液的时间减少了9倍,最佳差距小于0.05 \%\%和0.4 \%\%\%\%\%的不可行性。此外,使用较短的计划范围训练的模型可以成功预测具有更长计划范围的实例的最佳解决方案。对于最困难的数据集,LSTM在25 \%级别的LSTM预测将70 CPU小时的溶液时间降低至小于2 CPU分钟,最佳差距为0.8 \%,而没有任何不可行。 LSTM-OPT框架在解决方案质量和精确方法方面,诸如Logistic回归和随机森林之类的经典ML算法(例如($ \ ell $,s)和基于动态编程的不平等,解决方案时间的改进。我们的机器学习方法可能有益于解决类似于CLSP的顺序决策问题,CLSP需要重复,经常和快速地解决。
translated by 谷歌翻译
Unit commitment (UC) are essential tools to transmission system operators for finding the most economical and feasible generation schedules and dispatch signals. Constraint screening has been receiving attention as it holds the promise for reducing a number of inactive or redundant constraints in the UC problem, so that the solution process of large scale UC problem can be accelerated by considering the reduced optimization problem. Standard constraint screening approach relies on optimizing over load and generations to find binding line flow constraints, yet the screening is conservative with a large percentage of constraints still reserved for the UC problem. In this paper, we propose a novel machine learning (ML) model to predict the most economical costs given load inputs. Such ML model bridges the cost perspectives of UC decisions to the optimization-based constraint screening model, and can screen out higher proportion of operational constraints. We verify the proposed method's performance on both sample-aware and sample-agnostic setting, and illustrate the proposed scheme can further reduce the computation time on a variety of setup for UC problems.
translated by 谷歌翻译
OPF问题是为电力系统操作而制定和解决的,尤其是用于实时确定生成调度点。对于具有大量变量和约束的大型功率系统网络,以及时找到实时OPF的最佳解决方案需要大量的计算能力。本文提出了一种使用图神经网络(GNN)减少原始OPF问题中约束数量的新方法。 GNN是一种创新的机器学习模型,它利用从节点,边缘和网络拓扑的功能来最大程度地提高其性能。在本文中,我们提出了一个GNN模型,以预测哪种线将大量负载或充满给定的负载曲线和发电能力。仅在OPF问题中监视这些关键行,从而造成降低的OPF(ROPF)问题。预期从提出的ROPF模型中预计计算时间大量节省。还对GNN模型的预测进行了全面分析。结论是,GNN在ROPF中的应用能够减少计算时间,同时保留溶液质量。
translated by 谷歌翻译
本文介绍了一个框架,以捕获先前棘手的优化约束,并通过使用神经网络将其转换为混合构成线性程序。我们编码以可拖动和顽固的约束为特征的优化问题的可行空间,例如微分方程,转到神经网络。利用神经网络的精确混合重新印象,我们解决了混合企业线性程序,该程序将解决方案准确地近似于最初棘手的非线性优化问题。我们将方法应用于交流最佳功率流问题(AC-OPF),其中直接包含动态安全性约束可使AC-OPF棘手。我们提出的方法具有比传统方法更明显的可扩展性。我们展示了考虑N-1安全性和小信号稳定性的电力系统操作方法,展示了如何有效地获得成本优势的解决方案,同时满足静态和动态安全性约束。
translated by 谷歌翻译
单位承诺(UC)是日期电力市场中的一个基本问题,有效解决UC问题至关重要。 UC问题通常采用数学优化技术,例如动态编程,拉格朗日放松和混合二次二次编程(MIQP)。但是,这些方法的计算时间随着发电机和能源资源的数量而增加,这仍然是行业中的主要瓶颈。人工智能的最新进展证明了加强学习(RL)解决UC问题的能力。不幸的是,当UC问题的大小增长时,现有关于解决RL的UC问题的研究受到维数的诅咒。为了解决这些问题,我们提出了一个优化方法辅助的集合深钢筋学习算法,其中UC问题是作为Markov决策过程(MDP)提出的,并通过集合框架中的多步进深度学习解决。所提出的算法通过解决量身定制的优化问题来确保相对较高的性能和操作约束的满意度来建立候选动作。关于IEEE 118和300总线系统的数值研究表明,我们的算法优于基线RL算法和MIQP。此外,所提出的算法在无法预见的操作条件下显示出强大的概括能力。
translated by 谷歌翻译
电力系统状态估计面临着不同类型的异常。这些可能包括由总测量错误或通信系统故障引起的不良数据。根据实施的状态估计方法,负载或发电的突然变化可以视为异常。此外,将电网视为网络物理系统,状态估计变得容易受到虚假数据注射攻击的影响。现有的异常分类方法无法准确对上述三种异常进行分类(区分),尤其是在歧视突然的负载变化和虚假数据注入攻击时。本文提出了一种用于检测异常存在,对异常类型进行分类并识别异常起源的新算法更改或通过错误数据注入攻击针对的状态变量。该算法结合了分析和机器学习(ML)方法。第一阶段通过组合$ \ chi^2 $检测指数来利用一种分析方法来检测异常存在。第二阶段利用ML进行异常类型的分类和其来源的识别,特别是指突然负载变化和错误数据注射攻击的歧视。提出的基于ML的方法经过训练,可以独立于网络配置,该网络配置消除了网络拓扑变化后算法的重新训练。通过在IEEE 14总线测试系统上实施拟议的算法获得的结果证明了拟议算法的准确性和有效性。
translated by 谷歌翻译
电池储能系统(BES)可以有效地减轻可变生成的不确定性。降解是不可预防的,难以建模,并且可以预测诸如最受欢迎的锂离子电池(LIB)等电池。在本文中,我们提出了一种数据驱动的方法,以预测给定的预定电池操作专业文件的蝙蝠降解。特别是,提出了基于神经网络的电池降解(NNBD)模型,以用主要电池降解因子的输入来量化电池降解。当将拟议的NNBD模型限制为微电网日期调度(MDS)时,我们可以建立基于电池降解的MDS(BDMDS)模型,该模型可以考虑在拟议的基于循环的电池用途(CBUP)(CBUP)(CBUP)(CBUP)的情况下准确地考虑等效的电池降解成本NNBD模型的方法。由于所提出的NNBD模型是高度非线性的,因此BDMD很难解决。为了解决这个问题,本文提出了一个神经网络和优化解耦启发式(NNODH)算法,以有效解决此神经网络嵌入式优化问题。仿真结果表明,所提出的NNODH算法能够以最低的总成本(包括正常运行成本和电池降解成本)遵守最佳解决方案。
translated by 谷歌翻译
在具有可再生生成的大量份额的网格中,由于负载和发电的波动性增加,运营商将需要其他工具来评估运营风险。正向不确定性传播问题的计算要求必须解决众多安全受限的经济调度(SCED)优化,是这种实时风险评估的主要障碍。本文提出了一个即时风险评估学习框架(Jitralf)作为替代方案。 Jitralf训练风险代理,每天每小时一个,使用机器学习(ML)来预测估计风险所需的数量,而无需明确解决SCED问题。这大大减轻了正向不确定性传播的计算负担,并允许快速,实时的风险估计。本文还提出了一种新颖的,不对称的损失函数,并表明使用不对称损失训练的模型的性能优于使用对称损耗函数的模型。在法国传输系统上评估了Jitralf,以评估运营储量不足的风险,减轻负载的风险和预期的运营成本。
translated by 谷歌翻译
安全约束的经济调度(SCED)是传输系统运营商(TSO)的基本优化模型,以清除实时能源市场,同时确保电网的可靠操作。在不断增长的运营不确定性的背景下,由于可再生发电机和分布式能源资源的渗透率增加,运营商必须实时监控风险,即,他们必须在负载和可再生生产的各种变化下快速评估系统的行为。遗憾的是,鉴于实时操作的严格约束,系统地解决了每个这样的场景的优化问题。为了克服这种限制,本文提出了学习SCED,即机器学习(ML)模型的优化代理,其可以预测用于以毫秒为单位的最佳解决方案。本文提出了对MISO市场清算优化优化的原则性分析,提出了一种新颖的ML管道,解决了学习SCES解决方案的主要挑战,即负载,可再生产量和生产成本以及组合结构的变化,以及组合结构承诺决定。还提出了一种新的分类 - 然后回归架构,以进一步捕获SCED解决方案的行为。在法国传输系统上报告了数值实验,并展示了该方法在与实时操作兼容的时间范围内生产的能力,精确的优化代理产生相对误差低于0.6 \%$。
translated by 谷歌翻译
要将计算负担从实时到延迟关键电源系统应用程序的脱机,最近的作品招待使用深神经网络(DNN)的想法来预测一次呈现的AC最佳功率流(AC-OPF)的解决方案负载需求。随着网络拓扑可能改变的,以样本有效的方式训练该DNN成为必需品。为提高数据效率,这项工作利用了OPF数据不是简单的训练标签,而是构成参数优化问题的解决方案。因此,我们倡导培训一个灵敏度通知的DNN(SI-DNN),不仅可以匹配OPF优化器,而且还匹配它们的部分导数相对于OPF参数(负载)。结果表明,所需的雅可比矩阵确实存在于温和条件下,并且可以从相关的原始/双解决方案中容易地计算。所提出的Si-DNN与广泛的OPF溶剂兼容,包括非凸出的二次约束的二次程序(QCQP),其半纤维程序(SDP)放松和MatPower;虽然Si-DNN可以在其他学习到OPF方案中无缝集成。三个基准电源系统的数值测试证实了SI-DNN在传统训练的DNN上预测的OPF解决方案的高级泛化和约束满意度,尤其是在低数据设置中。
translated by 谷歌翻译
由于固有的DNN预测误差,确保解决方案可行性是开发用于解决受约束优化问题的深度神经网络(DNN)方案的关键挑战。在本文中,我们提出了一种“预防性学习”的框架,以系统地保证DNN解决方案可行性的凸起约束和一般客观函数的问题。我们首先应用预测和重建设计,不仅保证平等约束,还可以利用它们来减少DNN预测的变量的数量。然后,作为关键方法贡献,我们系统地校准了DNN训练中使用的不等式约束,从而预测预测误差并确保所得到的解决方案仍然可行。我们表征校准量大和DNN尺寸,足以确保通用可行性。我们提出了一种新的敌对样本意识到培训算法,以改善DNN的最优性能而不牺牲可行性保证。总的来说,该框架提供了两个DNN。表征足够的DNN大小的第一个可以保证通用可行性,而来自所提出的培训算法的另一个进一步提高了最优性并同时保持DNN的通用可行性。我们应用预防性学习框架来开发Deepopf +,以解决网格运行中的基本DC最佳功率流量问题。它在确保在轻负载和重载制度中的可行性和获得一致的理想加速性能时,它可以改善现有的基于DNN的方案。仿真结果对IEEE案例-30 / 118/300测试用例显示DeepoPF +与最优性损失的最优损失和最高幅度计算加速度为100 \%$ 0.5%的可行解决方案,相比之下艺术迭代求解器。
translated by 谷歌翻译
由于负载和可再生能源的不确定性日益增长,对现代电网的安全和最佳运行产生了突出的挑战。随机最佳功率流(SOPF)制剂提供了一种通过计算在不确定性下保持可行性的派遣决策和控制政策来处理这些不确定性的机制。大多数SOPF配方考虑了简单的控制策略,例如数学上简单的仿射策略,类似于当前实践中使用的许多策略。通过机器学习(ML)算法的功效和一般控制政策的潜在好处的效果,我们提出了一个深度神经网络(DNN)基础的政策,该政策是实时预测发电机调度决策的不确定。使用解决SOPF的随机原始双重更新来学习DNN的权重,而无需先前一代训练标签,并且可以明确地解释SOPF中的可行性约束。 DNN政策对更简单的政策和它们在执行安全限制和产生附近的近最佳解决方案中的功效的优点在于机会在许多测试用例上受到限制的制定的情况下。
translated by 谷歌翻译
随着现代世界中对高度安全和可靠的轻质系统的需求增加,物理上无统治的功能(PUF)继续承诺可轻巧的高成本加密技术和安全钥匙存储。虽然PUF承诺的安全功能对安全系统设计师具有很高的吸引力,但已证明它们容易受到各种复杂攻击的攻击 - 最著名的是基于机器的建模攻击(ML -MA),这些攻击(ML -MA)试图以数字方式克隆PUF行为因此破坏了他们的安全。最新的ML-MA甚至还利用了PUF误差校正所需的公开辅助数据,以预测PUF响应而无需了解响应数据。为此,与传统的PUF储存技术和比较的PUF技术相反,研究开始研究PUF设备的身份验证,并进行了著名的挑战 - 响应对(CRP)的比较。在本文中,我们基于新颖的“ PUF - 表型”概念提出了一个使用ML的分类系统,以准确识别起点并确定得出的噪声记忆(DRAM)PUF响应的有效性作为助手数据依赖数据的Denoisis技术的替代方法。据我们所知,我们是第一个每个模型对多个设备进行分类的人,以实现基于组的PUF身份验证方案。我们使用修改后的深卷积神经网络(CNN)最多达到98 \%的分类精度,并与几个完善的分类器结合使用特征提取。我们还在实验中验证了在Raspberry Pi设备上模型的性能,以确定在资源约束环境中部署我们所提出的模型的适用性。
translated by 谷歌翻译
Machine learning (ML) algorithms are remarkably good at approximating complex non-linear relationships. Most ML training processes, however, are designed to deliver ML tools with good average performance, but do not offer any guarantees about their worst-case estimation error. For safety-critical systems such as power systems, this places a major barrier for their adoption. So far, approaches could determine the worst-case violations of only trained ML algorithms. To the best of our knowledge, this is the first paper to introduce a neural network training procedure designed to achieve both a good average performance and minimum worst-case violations. Using the Optimal Power Flow (OPF) problem as a guiding application, our approach (i) introduces a framework that reduces the worst-case generation constraint violations during training, incorporating them as a differentiable optimization layer; and (ii) presents a neural network sequential learning architecture to significantly accelerate it. We demonstrate the proposed architecture on four different test systems ranging from 39 buses to 162 buses, for both AC-OPF and DC-OPF applications.
translated by 谷歌翻译
可再生能源世代的高百分比渗透对电力系统引起了重大不确定性。它要求网格操作员更频繁地解决替代电流最佳功率流(AC-OPF)问题,以便在传输和分配网格中进行经济和可靠的操作。在本文中,我们开发了一种Deep神经网络(DNN)方法,称为DEEPOPF,用于在传统求解器使用的时间中解决AC-OPF问题。应用机器学习技术解决AC-OPF问题的关键困难在于确保获得的解决方案尊重平等和不平等的物理和操作约束。在[1],[2]中概括了2阶段的过程,DEEPOPF首先训练DNN模型,以预测一组独立的操作变量,然后通过求解功率流方程直接计算剩余的可靠性变量。这种方法不仅保留了平衡平等的限制,而且还减少了DNN预测的变量数量,从而减少了所需的神经元和训练数据的数量。然后,DeePOPF在培训过程中采用零级梯度估计技术采用惩罚方法,以保留其余的不平等约束。作为另一个贡献,我们根据所需的近似精度来驱动调整DNN的大小的条件,该准确性测量了DNN的概括能力。它为使用DNN解决AC-OPF问题提供了理论上的理由。 IEEE 30/118/300-BU和合成2000总线测试用例的仿真结果表明,与最先进的求解器相比,DEEPOPF最多将计算时间速度高达两个数量级,费用为费用$ <$ <$ 0.1%的成本差异。
translated by 谷歌翻译