仇恨言论以贬义的评论以多种形式针对社区,并使人类退后一步。 Hatexplain是最近出版的第一个数据集,用于以理由的形式使用带注释的跨度,以及语音分类类别和有针对性的社区,以使分类更具人性化,可解释,准确和偏见。我们调整BERT以理由和阶级预测的形式执行此任务,并比较我们对跨精度,解释性和偏见的不同指标的性能。我们的新颖性是三倍。首先,我们尝试具有不同重要性值的合并理由类损失。其次,我们对理由的地面真相注意值进行了广泛的实验。随着保守和宽大的关注,我们比较了hatexplain模型的性能并检验我们的假设。第三,为了改善模型中的意外偏见,我们使用目标社区单词的掩盖,并注意偏见和解释性指标的改善。总体而言,我们成功地实现了模型的解释性,偏差删除和对原始BERT实施的几个增量改进。
translated by 谷歌翻译
Abusive language is a concerning problem in online social media. Past research on detecting abusive language covers different platforms, languages, demographies, etc. However, models trained using these datasets do not perform well in cross-domain evaluation settings. To overcome this, a common strategy is to use a few samples from the target domain to train models to get better performance in that domain (cross-domain few-shot training). However, this might cause the models to overfit the artefacts of those samples. A compelling solution could be to guide the models toward rationales, i.e., spans of text that justify the text's label. This method has been found to improve model performance in the in-domain setting across various NLP tasks. In this paper, we propose RAFT (Rationale Adaptor for Few-shoT classification) for abusive language detection. We first build a multitask learning setup to jointly learn rationales, targets, and labels, and find a significant improvement of 6% macro F1 on the rationale detection task over training solely rationale classifiers. We introduce two rationale-integrated BERT-based architectures (the RAFT models) and evaluate our systems over five different abusive language datasets, finding that in the few-shot classification setting, RAFT-based models outperform baseline models by about 7% in macro F1 scores and perform competitively to models finetuned on other source domains. Furthermore, RAFT-based models outperform LIME/SHAP-based approaches in terms of plausibility and are close in performance in terms of faithfulness.
translated by 谷歌翻译
Recent directions for offensive language detection are hierarchical modeling, identifying the type and the target of offensive language, and interpretability with offensive span annotation and prediction. These improvements are focused on English and do not transfer well to other languages because of cultural and linguistic differences. In this paper, we present the Korean Offensive Language Dataset (KOLD) comprising 40,429 comments, which are annotated hierarchically with the type and the target of offensive language, accompanied by annotations of the corresponding text spans. We collect the comments from NAVER news and YouTube platform and provide the titles of the articles and videos as the context information for the annotation process. We use these annotated comments as training data for Korean BERT and RoBERTa models and find that they are effective at offensiveness detection, target classification, and target span detection while having room for improvement for target group classification and offensive span detection. We discover that the target group distribution differs drastically from the existing English datasets, and observe that providing the context information improves the model performance in offensiveness detection (+0.3), target classification (+1.5), and target group classification (+13.1). We publicly release the dataset and baseline models.
translated by 谷歌翻译
在线仇恨言论已成为小时的需求。但是,由于几种地缘政治和文化原因,对此类活动的禁令是不可行的。为了减少问题的严重性,在本文中,我们介绍了一项新颖的任务,仇恨言语归一化,旨在削弱在线帖子表现出的仇恨强度。仇恨言语归一化的意图不是支持仇恨,而是为用户提供对非讨厌的垫脚石,同时为在线平台提供更多时间来监视用户行为的任何改进。为此,我们手动策划了平行语料库 - 仇恨文本及其标准化的同行(标准化文本较不憎恨,更良性)。我们介绍了NACL,这是一个简单而有效的仇恨言语归一化模型,该模型在三个阶段运行 - 首先,它测量了原始样本的仇恨强度;其次,它标识了其中的仇恨跨度;最后,它通过解释仇恨跨度来降低仇恨强度。我们进行了广泛的实验,以通过三向评估(内在,外部和人类研究)来衡量NaCl的功效。我们观察到,NaCl优于六个基准-NACL的强度预测得分为0.1365 RMSE,在SPAN识别中获得0.622 F1分数,而82.27 BLEU和80.05的差异和80.05的困惑为归一化​​文本生成。我们进一步显示了NACL在其他平台上的普遍性(Reddit,Facebook,GAB)。将NaCl的交互式原型放在一起进行用户研究。此外,该工具正在WIPRO AI的真实环境中部署,这是其在线平台上处理有害内容的任务的一部分。
translated by 谷歌翻译
As the societal impact of Deep Neural Networks (DNNs) grows, the goals for advancing DNNs become more complex and diverse, ranging from improving a conventional model accuracy metric to infusing advanced human virtues such as fairness, accountability, transparency (FaccT), and unbiasedness. Recently, techniques in Explainable Artificial Intelligence (XAI) are attracting considerable attention, and have tremendously helped Machine Learning (ML) engineers in understanding AI models. However, at the same time, we started to witness the emerging need beyond XAI among AI communities; based on the insights learned from XAI, how can we better empower ML engineers in steering their DNNs so that the model's reasonableness and performance can be improved as intended? This article provides a timely and extensive literature overview of the field Explanation-Guided Learning (EGL), a domain of techniques that steer the DNNs' reasoning process by adding regularization, supervision, or intervention on model explanations. In doing so, we first provide a formal definition of EGL and its general learning paradigm. Secondly, an overview of the key factors for EGL evaluation, as well as summarization and categorization of existing evaluation procedures and metrics for EGL are provided. Finally, the current and potential future application areas and directions of EGL are discussed, and an extensive experimental study is presented aiming at providing comprehensive comparative studies among existing EGL models in various popular application domains, such as Computer Vision (CV) and Natural Language Processing (NLP) domains.
translated by 谷歌翻译
社交媒体平台上的滥用内容的增长增加对在线用户的负面影响。对女同性恋,同性恋者,跨性别或双性恋者的恐惧,不喜欢,不适或不疑虑被定义为同性恋/转铁症。同性恋/翻译语音是一种令人反感的语言,可以总结为针对LGBT +人的仇恨语音,近年来越来越受到兴趣。在线同性恋恐惧症/ Transphobobia是一个严重的社会问题,可以使网上平台与LGBT +人有毒和不受欢迎,同时还试图消除平等,多样性和包容性。我们为在线同性恋和转鸟以及专家标记的数据集提供了新的分类分类,这将允许自动识别出具有同种异体/传递内容的数据集。我们受过教育的注释器并以综合的注释规则向他们提供,因为这是一个敏感的问题,我们以前发现未受训练的众包注释者因文化和其他偏见而诊断倡导性的群体。数据集包含15,141个注释的多语言评论。本文介绍了构建数据集,数据的定性分析和注册间协议的过程。此外,我们为数据集创建基线模型。据我们所知,我们的数据集是第一个已创建的数据集。警告:本文含有明确的同性恋,转基因症,刻板印象的明确陈述,这可能对某些读者令人痛苦。
translated by 谷歌翻译
The widespread of offensive content online, such as hate speech and cyber-bullying, is a global phenomenon. This has sparked interest in the artificial intelligence (AI) and natural language processing (NLP) communities, motivating the development of various systems trained to detect potentially harmful content automatically. These systems require annotated datasets to train the machine learning (ML) models. However, with a few notable exceptions, most datasets on this topic have dealt with English and a few other high-resource languages. As a result, the research in offensive language identification has been limited to these languages. This paper addresses this gap by tackling offensive language identification in Sinhala, a low-resource Indo-Aryan language spoken by over 17 million people in Sri Lanka. We introduce the Sinhala Offensive Language Dataset (SOLD) and present multiple experiments on this dataset. SOLD is a manually annotated dataset containing 10,000 posts from Twitter annotated as offensive and not offensive at both sentence-level and token-level, improving the explainability of the ML models. SOLD is the first large publicly available offensive language dataset compiled for Sinhala. We also introduce SemiSOLD, a larger dataset containing more than 145,000 Sinhala tweets, annotated following a semi-supervised approach.
translated by 谷歌翻译
构建用于仇恨语音检测的基准数据集具有各种挑战。首先,因为仇恨的言论相对少见,随机抽样对诠释的推文是非常效率的发现仇恨。为了解决此问题,先前的数据集通常仅包含匹配已知的“讨厌字”的推文。然而,将数据限制为预定义的词汇表可能排除我们寻求模型的现实世界现象的部分。第二个挑战是仇恨言论的定义往往是高度不同和主观的。具有多种讨论仇恨言论的注释者可能不仅可能不同意彼此不同意,而且还努力符合指定的标签指南。我们的重点识别是仇恨语音的罕见和主体性类似于信息检索(IR)中的相关性。此连接表明,可以有效地应用创建IR测试集合的良好方法,以创建更好的基准数据集以进行仇恨语音。为了智能和有效地选择要注释的推文,我们应用{\ em汇集}和{em主动学习}的标准IR技术。为了提高注释的一致性和价值,我们应用{\ EM任务分解}和{\ EM注释器理由}技术。我们在Twitter上共享一个用于仇恨语音检测的新基准数据集,其提供比以前的数据集更广泛的仇恨覆盖。在这些更广泛形式的仇恨中测试时,我们还表现出现有检测模型的准确性的戏剧性降低。注册器理由我们不仅可以证明标签决策证明,而且还可以在建模中实现未来的双重监督和/或解释生成的工作机会。我们的方法的进一步细节可以在补充材料中找到。
translated by 谷歌翻译
由于细微偏见,主观性和难以在规模上获得良好质量的数据集,尤其考虑到社会偏见和社会的不断变化本质,检测文本中的社会偏见是挑战。为了解决这些挑战,我们提出了一些基于指令的基于指令的方法,以提示预先接受预先接受的语言模型(LMS)。我们从最接近查询的小型支持存储库中选择一些标签平衡的示例,以便在嵌入空间中标记。然后,我们向LM提供由标记示例的此子集的指令,查询文本被分类,偏差定义,并提示它做出决定。我们证明了几次上下文中使用的大型LMS可以检测不同类型的细粒度偏差,具有与微调模型的相似且有时卓越的精度。我们观察到,与较小模型相比,最大的530B参数模型在检测社会偏差方面明显更有效(与其他模型相比,在AUC度量上实现至少20%)。它还在几张拍摄设置中保持高AUC(掉落小于5%),其中标记的存储库减少到100个样本的少量。因此,大型预制语言模型使得更容易且更快地建立新的偏置探测器。
translated by 谷歌翻译
Deep Learning and Machine Learning based models have become extremely popular in text processing and information retrieval. However, the non-linear structures present inside the networks make these models largely inscrutable. A significant body of research has focused on increasing the transparency of these models. This article provides a broad overview of research on the explainability and interpretability of natural language processing and information retrieval methods. More specifically, we survey approaches that have been applied to explain word embeddings, sequence modeling, attention modules, transformers, BERT, and document ranking. The concluding section suggests some possible directions for future research on this topic.
translated by 谷歌翻译
Supervised approaches generally rely on majority-based labels. However, it is hard to achieve high agreement among annotators in subjective tasks such as hate speech detection. Existing neural network models principally regard labels as categorical variables, while ignoring the semantic information in diverse label texts. In this paper, we propose AnnoBERT, a first-of-its-kind architecture integrating annotator characteristics and label text with a transformer-based model to detect hate speech, with unique representations based on each annotator's characteristics via Collaborative Topic Regression (CTR) and integrate label text to enrich textual representations. During training, the model associates annotators with their label choices given a piece of text; during evaluation, when label information is not available, the model predicts the aggregated label given by the participating annotators by utilising the learnt association. The proposed approach displayed an advantage in detecting hate speech, especially in the minority class and edge cases with annotator disagreement. Improvement in the overall performance is the largest when the dataset is more label-imbalanced, suggesting its practical value in identifying real-world hate speech, as the volume of hate speech in-the-wild is extremely small on social media, when compared with normal (non-hate) speech. Through ablation studies, we show the relative contributions of annotator embeddings and label text to the model performance, and tested a range of alternative annotator embeddings and label text combinations.
translated by 谷歌翻译
本文介绍了关于剧透筛选的研究。在这种用例中,我们描述了微调和组织基于文本的模型任务的方法,并具有最新的深度学习成果和技术来解释模型的结果。到目前为止,文献中的剧透研究很少描述。我们在带有带注释的扰流板(ROC AUC以上的TV Tropes Point DataSet上超过81 \%的Roc Auc以上的Roc Auc上超过81 \%)的转移学习方法和不同的最新变压器架构。我们还收集了数据并使用细粒度注释组装了新数据集。为此,我们采用了可解释技术和措施来评估模型的可靠性并解释其结果。
translated by 谷歌翻译
众所周知,端到端的神经NLP体系结构很难理解,这引起了近年来为解释性建模的许多努力。模型解释的基本原则是忠诚,即,解释应准确地代表模型预测背后的推理过程。这项调查首先讨论了忠诚的定义和评估及其对解释性的意义。然后,我们通过将方法分为五类来介绍忠实解释的最新进展:相似性方法,模型内部结构的分析,基于反向传播的方法,反事实干预和自我解释模型。每个类别将通过其代表性研究,优势和缺点来说明。最后,我们从它们的共同美德和局限性方面讨论了上述所有方法,并反思未来的工作方向忠实的解释性。对于有兴趣研究可解释性的研究人员,这项调查将为该领域提供可访问且全面的概述,为进一步探索提供基础。对于希望更好地了解自己的模型的用户,该调查将是一项介绍性手册,帮助选择最合适的解释方法。
translated by 谷歌翻译
软件工程(SE)中的情感分析表明了承诺分析和支持各种发展活动。我们报告了经验研究的结果,以确定我们通过组合独立的SE特定情绪探测器的极性标签来确定开发集合发动机的可行性。我们的研究有两个阶段。在第一阶段,我们通过Lin等人从最近发表的两篇论文中选择了五个特定的情绪检测工具。 [31,32],谁首先报告了独立的情绪探测器的负面结果,然后提出了改进的SE特异性情绪检测器,POME [31]。我们向第17,581个单位(句子/文件)报告来自六个目前可用情绪基准的17,581个单位(句子/文件)。我们发现现有工具可以在85-95%的情况下互补,即,一个是错误的,但另一个是对的。然而,这些工具的大多数基于投票的集合未能提高情绪检测的准确性。我们通过将极性标签和单词袋作为特征组合来开发Sentisead,一个受监督的工具。 Sentisead将各个工具的性能(F1分数)提高了4%(Over Senti4SD [5]) - 100%(通过Pome [31])。在第二阶段,我们使用预先培训的变压器模型(PTM)进行比较和改进Sentisead基础架构。我们发现,带Roberta的Sentisead基础架构作为来自Lin等人的五个独立规则和浅学习的SE特定工具的集合。 [31,32]在六个数据集中提供0.805的最佳F1分数,而独立罗伯塔显示F1分数为0.801。
translated by 谷歌翻译
信息通过社交媒体平台的传播可以创造可能对弱势社区的环境和社会中某些群体的沉默。为了减轻此类情况,已经开发了几种模型来检测仇恨和冒犯性言论。由于在社交媒体平台中检测仇恨和冒犯性演讲可能会错误地将个人排除在社交媒体平台之外,从而减少信任,因此有必要创建可解释和可解释的模型。因此,我们基于在Twitter数据上培训的XGBOOST算法建立了一个可解释且可解释的高性能模型。对于不平衡的Twitter数据,XGBoost在仇恨言语检测上的表现优于LSTM,Autogluon和ULMFIT模型,F1得分为0.75,而0.38和0.37分别为0.37和0.38。当我们将数据放到三个单独的类别的大约5000个推文中时,XGBoost的性能优于LSTM,Autogluon和Ulmfit;仇恨言语检测的F1分别为0.79和0.69、0.77和0.66。 XGBOOST在下采样版本中的进攻性语音检测中的F1得分分别为0.83和0.88、0.82和0.79,XGBOOST的表现也比LSTM,Autogluon和Ulmfit更好。我们在XGBoost模型的输出上使用Shapley添加说明(SHAP),以使其与Black-Box模型相比,与LSTM,Autogluon和Ulmfit相比,它可以解释和解释。
translated by 谷歌翻译
已经开发了许多方法,以通过消除社交媒体平台的庸俗,令人反感和激烈的评论来监测现代岁月中的消极性传播。然而,存在相对较少的研究,这些研究会收敛于拥抱积极性,加强在线论坛中的支持性和放心内容。因此,我们建议创建英国kannada希望语音数据集,Kanhope并比较几个实验来基准数据集。 DataSet由6,176个用户生成的评论组成,代码混合kannada从YouTube刮擦并手动注释为轴承希望语音或不希望的演讲。此外,我们介绍了DC-BERT4HOPE,一种使用Kanhope的英语翻译进行额外培训的双通道模型,以促进希望语音检测。该方法实现了0.756的加权F1分数,更好的其他模型。从此,卡霍普旨在促进坎卡达的研究,同时促进研究人员,以鼓励,积极和支持的在线内容中务实的方法。
translated by 谷歌翻译
在过去的十年中,我们看到了社交媒体平台推动的在线内容中的指数增长。该规模的数据生成具有难以克服的攻击内容的警告。通过多种方式(图像,语言等),代码混合语言等,通过使用识别冒犯内容的复杂性加剧了。此外,即使我们仔细采样和注释令人反感的内容,也将始终存在攻击性VS非冒犯内容的显着类别不平衡。在本文中,我们介绍了一种基于新的Code-Mixing指数(CMI)的焦点损失,其避免了两个挑战(1)代码混合语言(2)类别不平衡问题,用于Dravidian语言冒犯检测。我们还通过基于余弦的分类器更换传统的小点产品类分类器,这导致性能提升。此外,我们使用多语言模型,帮助传输特征在跨语言中学到的,以有效地使用低资源语言。同样重要的是要注意我们的模型处理混合脚本的实例(例如,说拉丁和Dravidian - 泰米尔脚本脚本的使用)也是如此。我们的模型可以在低资源,类别不平衡,多语言和代码混合设置中处理令人反感的语言检测。
translated by 谷歌翻译
我们研究了检查问题的事实,旨在识别给定索赔的真实性。具体而言,我们专注于事实提取和验证(发烧)及其伴随数据集的任务。该任务包括从维基百科检索相关文件(和句子)并验证文件中的信息是否支持或驳斥所索赔的索赔。此任务至关重要,可以是假新闻检测和医疗索赔验证等应用程序块。在本文中,我们以通过以结构化和全面的方式呈现文献来更好地了解任务的挑战。我们通过分析不同方法的技术视角并讨论发热数据集的性能结果,描述了所提出的方法,这是最熟悉的和正式结构化的数据集,就是事实提取和验证任务。我们还迄今为止迄今为止确定句子检索组件的有益损失函数的最大实验研究。我们的分析表明,采样负句对于提高性能并降低计算复杂性很重要。最后,我们描述了开放的问题和未来的挑战,我们激励了未来的任务研究。
translated by 谷歌翻译
长期以来,共同基金或交易所交易基金(ETF)的分类已为财务分析师提供服务,以进行同行分析,以从竞争对手分析开始到量化投资组合多元化。分类方法通常依赖于从n-1a表格中提取的结构化格式的基金组成数据。在这里,我们启动一项研究,直接从使用自然语言处理(NLP)的表格中描绘的非结构化数据中学习分类系统。将输入数据仅作为表格中报告的投资策略描述,而目标变量是Lipper全球类别,并且使用各种NLP模型,我们表明,分类系统确实可以通过高准确率。我们讨论了我们发现的含义和应用,以及现有的预培训架构的局限性在应用它们以学习基金分类时。
translated by 谷歌翻译
*内容警告:此工作显示明确和强烈令人反感的语言的示例。 Covid-19大流行引起了抗亚洲仇外心理和偏见的激增。许多人已经向社交媒体表达了这些负面情绪,需要开发可靠的系统来检测仇恨言论,往往是代表性的人口统计。在本文中,我们使用2种实验方法创建和注释推特推文的语料库,以探讨较好的粒度的反亚洲滥用和仇恨言论。使用具有较少偏置注释的数据集,我们部署多种模型,并检查其他相关的语料库的适用性来完成这些多任务分类。除了展示有希望的结果外,我们的实验还提供了对文化和后勤因素的差别,以了解不同人口统计学的讨厌讲话。我们的分析旨在促进对仇恨语音检测领域的理解,特别是对低资源群体。
translated by 谷歌翻译