*内容警告:此工作显示明确和强烈令人反感的语言的示例。 Covid-19大流行引起了抗亚洲仇外心理和偏见的激增。许多人已经向社交媒体表达了这些负面情绪,需要开发可靠的系统来检测仇恨言论,往往是代表性的人口统计。在本文中,我们使用2种实验方法创建和注释推特推文的语料库,以探讨较好的粒度的反亚洲滥用和仇恨言论。使用具有较少偏置注释的数据集,我们部署多种模型,并检查其他相关的语料库的适用性来完成这些多任务分类。除了展示有希望的结果外,我们的实验还提供了对文化和后勤因素的差别,以了解不同人口统计学的讨厌讲话。我们的分析旨在促进对仇恨语音检测领域的理解,特别是对低资源群体。
translated by 谷歌翻译
构建用于仇恨语音检测的基准数据集具有各种挑战。首先,因为仇恨的言论相对少见,随机抽样对诠释的推文是非常效率的发现仇恨。为了解决此问题,先前的数据集通常仅包含匹配已知的“讨厌字”的推文。然而,将数据限制为预定义的词汇表可能排除我们寻求模型的现实世界现象的部分。第二个挑战是仇恨言论的定义往往是高度不同和主观的。具有多种讨论仇恨言论的注释者可能不仅可能不同意彼此不同意,而且还努力符合指定的标签指南。我们的重点识别是仇恨语音的罕见和主体性类似于信息检索(IR)中的相关性。此连接表明,可以有效地应用创建IR测试集合的良好方法,以创建更好的基准数据集以进行仇恨语音。为了智能和有效地选择要注释的推文,我们应用{\ em汇集}和{em主动学习}的标准IR技术。为了提高注释的一致性和价值,我们应用{\ EM任务分解}和{\ EM注释器理由}技术。我们在Twitter上共享一个用于仇恨语音检测的新基准数据集,其提供比以前的数据集更广泛的仇恨覆盖。在这些更广泛形式的仇恨中测试时,我们还表现出现有检测模型的准确性的戏剧性降低。注册器理由我们不仅可以证明标签决策证明,而且还可以在建模中实现未来的双重监督和/或解释生成的工作机会。我们的方法的进一步细节可以在补充材料中找到。
translated by 谷歌翻译
自动识别仇恨和虐待内容对于打击有害在线内容及其破坏性影响的传播至关重要。大多数现有作品通过检查仇恨语音数据集中的火车测试拆分上的概括错误来评估模型。这些数据集通常在其定义和标记标准上有所不同,从而在预测新的域和数据集时会导致模型性能差。在这项工作中,我们提出了一种新的多任务学习(MTL)管道,该管道利用MTL在多个仇恨语音数据集中同时训练,以构建一个更包含的分类模型。我们通过采用保留的方案来模拟对新的未见数据集的评估,在该方案中,我们从培训中省略了目标数据集并在其他数据集中共同培训。我们的结果始终优于现有工作的大量样本。当在预测以前看不见的数据集时,在检查火车测试拆分中的概括误差和实质性改进时,我们会表现出强烈的结果。此外,我们组装了一个新颖的数据集,称为Pubfigs,重点是美国公共政治人物的问题。我们在PubFigs的305,235美元推文中自动发现有问题的语音,并发现了对公众人物的发布行为的见解。
translated by 谷歌翻译
Convincing people to get vaccinated against COVID-19 is a key societal challenge in the present times. As a first step towards this goal, many prior works have relied on social media analysis to understand the specific concerns that people have towards these vaccines, such as potential side-effects, ineffectiveness, political factors, and so on. Though there are datasets that broadly classify social media posts into Anti-vax and Pro-Vax labels, there is no dataset (to our knowledge) that labels social media posts according to the specific anti-vaccine concerns mentioned in the posts. In this paper, we have curated CAVES, the first large-scale dataset containing about 10k COVID-19 anti-vaccine tweets labelled into various specific anti-vaccine concerns in a multi-label setting. This is also the first multi-label classification dataset that provides explanations for each of the labels. Additionally, the dataset also provides class-wise summaries of all the tweets. We also perform preliminary experiments on the dataset and show that this is a very challenging dataset for multi-label explainable classification and tweet summarization, as is evident by the moderate scores achieved by some state-of-the-art models. Our dataset and codes are available at: https://github.com/sohampoddar26/caves-data
translated by 谷歌翻译
社交媒体平台主持了有关每天出现的各种主题的讨论。理解所有内容并将其组织成类别是一项艰巨的任务。处理此问题的一种常见方法是依靠主题建模,但是使用此技术发现的主题很难解释,并且从语料库到语料库可能会有所不同。在本文中,我们提出了基于推文主题分类的新任务,并发布两个相关的数据集。鉴于涵盖社交媒体中最重要的讨论点的广泛主题,我们提供了最近时间段的培训和测试数据,可用于评估推文分类模型。此外,我们在任务上对当前的通用和领域特定语言模型进行定量评估和分析,这为任务的挑战和性质提供了更多见解。
translated by 谷歌翻译
Hope is characterized as openness of spirit toward the future, a desire, expectation, and wish for something to happen or to be true that remarkably affects human's state of mind, emotions, behaviors, and decisions. Hope is usually associated with concepts of desired expectations and possibility/probability concerning the future. Despite its importance, hope has rarely been studied as a social media analysis task. This paper presents a hope speech dataset that classifies each tweet first into "Hope" and "Not Hope", then into three fine-grained hope categories: "Generalized Hope", "Realistic Hope", and "Unrealistic Hope" (along with "Not Hope"). English tweets in the first half of 2022 were collected to build this dataset. Furthermore, we describe our annotation process and guidelines in detail and discuss the challenges of classifying hope and the limitations of the existing hope speech detection corpora. In addition, we reported several baselines based on different learning approaches, such as traditional machine learning, deep learning, and transformers, to benchmark our dataset. We evaluated our baselines using weighted-averaged and macro-averaged F1-scores. Observations show that a strict process for annotator selection and detailed annotation guidelines enhanced the dataset's quality. This strict annotation process resulted in promising performance for simple machine learning classifiers with only bi-grams; however, binary and multiclass hope speech detection results reveal that contextual embedding models have higher performance in this dataset.
translated by 谷歌翻译
社交媒体平台上的滥用内容的增长增加对在线用户的负面影响。对女同性恋,同性恋者,跨性别或双性恋者的恐惧,不喜欢,不适或不疑虑被定义为同性恋/转铁症。同性恋/翻译语音是一种令人反感的语言,可以总结为针对LGBT +人的仇恨语音,近年来越来越受到兴趣。在线同性恋恐惧症/ Transphobobia是一个严重的社会问题,可以使网上平台与LGBT +人有毒和不受欢迎,同时还试图消除平等,多样性和包容性。我们为在线同性恋和转鸟以及专家标记的数据集提供了新的分类分类,这将允许自动识别出具有同种异体/传递内容的数据集。我们受过教育的注释器并以综合的注释规则向他们提供,因为这是一个敏感的问题,我们以前发现未受训练的众包注释者因文化和其他偏见而诊断倡导性的群体。数据集包含15,141个注释的多语言评论。本文介绍了构建数据集,数据的定性分析和注册间协议的过程。此外,我们为数据集创建基线模型。据我们所知,我们的数据集是第一个已创建的数据集。警告:本文含有明确的同性恋,转基因症,刻板印象的明确陈述,这可能对某些读者令人痛苦。
translated by 谷歌翻译
Covid-19的传播引发了针对亚洲社区的社交媒体的种族主义和仇恨。然而,关于种族仇恨在大流行期间的差异和柜台垂直在减轻这种蔓延的角色时,很少见过。在这项工作中,我们研究了通过推特镜头的反亚洲仇恨演讲的演变和传播。我们创建了Covid-讨厌,这是一个跨越14个月的反亚洲仇恨和柜台的最大数据集,含有超过2.06亿推文,以及超过1.27亿节节点的社交网络。通过创建一个新的手工标记数据集,3,355推文,我们培训文本分类器以识别仇恨和柜台jeech推文,以实现0.832的平均宏F1得分。使用此数据集,我们对推文和用户进行纵向分析。社交网络的分析揭示了可恨和柜台的用户互相互动,彼此广泛地互动,而不是生活在孤立的极化社区中。我们发现在暴露于仇恨内容后,节点很可能变得仇恨。值得注意的是,柜台椎间目可能会阻止用户转向仇恨,可能暗示在Web和社交媒体平台上遏制讨厌的解决方案。数据和代码是在http://claws.cc.gatech.edu/covid。
translated by 谷歌翻译
社交媒体在现代社会中尤其是在西方世界中的政策制定方面已经变得极其影响力(例如,48%的欧洲人每天或几乎每天都使用社交媒体)。 Twitter之类的平台使用户可以关注政客,从而使公民更多地参与政治讨论。同样,政客们使用Twitter来表达他们的观点,在当前主题上进行辩论,并促进其政治议程,以影响选民行为。先前的研究表明,传达负面情绪的推文可能会更频繁地转发。在本文中,我们试图分析来自不同国家的政客的推文,并探索他们的推文是否遵循相同的趋势。利用最先进的预训练的语言模型,我们对从希腊,西班牙和英国的成千上万的推文进行了情感分析,包括权威的行政部门。我们通过系统地探索和分析有影响力和不流行的推文之间的差异来实现这一目标。我们的分析表明,政治家的负面推文更广泛地传播,尤其是在最近的时代,并突出了情感和受欢迎程度相交的有趣趋势。
translated by 谷歌翻译
自2020年初以来,Covid-19-19造成了全球重大影响。这给社会带来了很多困惑,尤其是由于错误信息通过社交媒体传播。尽管已经有几项与在社交媒体数据中发现错误信息有关的研究,但大多数研究都集中在英语数据集上。印度尼西亚的COVID-19错误信息检测的研究仍然很少。因此,通过这项研究,我们收集和注释印尼语的数据集,并通过考虑该推文的相关性来构建用于检测COVID-19错误信息的预测模型。数据集构造是由一组注释者进行的,他们标记了推文数据的相关性和错误信息。在这项研究中,我们使用印度培训预培训的语言模型提出了两阶段分类器模型,以进行推文错误信息检测任务。我们还尝试了其他几种基线模型进行文本分类。实验结果表明,对于相关性预测,BERT序列分类器的组合和用于错误信息检测的BI-LSTM的组合优于其他机器学习模型,精度为87.02%。总体而言,BERT利用率有助于大多数预测模型的更高性能。我们发布了高质量的Covid-19错误信息推文语料库,用高通道一致性表示。
translated by 谷歌翻译
Following the outbreak of a global pandemic, online content is filled with hate speech. Donald Trump's ''Chinese Virus'' tweet shifted the blame for the spread of the Covid-19 virus to China and the Chinese people, which triggered a new round of anti-China hate both online and offline. This research intends to examine China-related hate speech on Twitter during the two years following the burst of the pandemic (2020 and 2021). Through Twitter's API, in total 2,172,333 tweets hashtagged #china posted during the time were collected. By employing multiple state-of-the-art pretrained language models for hate speech detection, we identify a wide range of hate of various types, resulting in an automatically labeled anti-China hate speech dataset. We identify a hateful rate in #china tweets of 2.5% in 2020 and 1.9% in 2021. This is well above the average rate of online hate speech on Twitter at 0.6% identified in Gao et al., 2017. We further analyzed the longitudinal development of #china tweets and those identified as hateful in 2020 and 2021 through visualizing the daily number and hate rate over the two years. Our keyword analysis of hate speech in #china tweets reveals the most frequently mentioned terms in the hateful #china tweets, which can be used for further social science studies.
translated by 谷歌翻译
The widespread of offensive content online, such as hate speech and cyber-bullying, is a global phenomenon. This has sparked interest in the artificial intelligence (AI) and natural language processing (NLP) communities, motivating the development of various systems trained to detect potentially harmful content automatically. These systems require annotated datasets to train the machine learning (ML) models. However, with a few notable exceptions, most datasets on this topic have dealt with English and a few other high-resource languages. As a result, the research in offensive language identification has been limited to these languages. This paper addresses this gap by tackling offensive language identification in Sinhala, a low-resource Indo-Aryan language spoken by over 17 million people in Sri Lanka. We introduce the Sinhala Offensive Language Dataset (SOLD) and present multiple experiments on this dataset. SOLD is a manually annotated dataset containing 10,000 posts from Twitter annotated as offensive and not offensive at both sentence-level and token-level, improving the explainability of the ML models. SOLD is the first large publicly available offensive language dataset compiled for Sinhala. We also introduce SemiSOLD, a larger dataset containing more than 145,000 Sinhala tweets, annotated following a semi-supervised approach.
translated by 谷歌翻译
Recent directions for offensive language detection are hierarchical modeling, identifying the type and the target of offensive language, and interpretability with offensive span annotation and prediction. These improvements are focused on English and do not transfer well to other languages because of cultural and linguistic differences. In this paper, we present the Korean Offensive Language Dataset (KOLD) comprising 40,429 comments, which are annotated hierarchically with the type and the target of offensive language, accompanied by annotations of the corresponding text spans. We collect the comments from NAVER news and YouTube platform and provide the titles of the articles and videos as the context information for the annotation process. We use these annotated comments as training data for Korean BERT and RoBERTa models and find that they are effective at offensiveness detection, target classification, and target span detection while having room for improvement for target group classification and offensive span detection. We discover that the target group distribution differs drastically from the existing English datasets, and observe that providing the context information improves the model performance in offensiveness detection (+0.3), target classification (+1.5), and target group classification (+13.1). We publicly release the dataset and baseline models.
translated by 谷歌翻译
We investigate how annotators' insensitivity to differences in dialect can lead to racial bias in automatic hate speech detection models, potentially amplifying harm against minority populations. We first uncover unexpected correlations between surface markers of African American English (AAE) and ratings of toxicity in several widely-used hate speech datasets. Then, we show that models trained on these corpora acquire and propagate these biases, such that AAE tweets and tweets by self-identified African Americans are up to two times more likely to be labelled as offensive compared to others. Finally, we propose dialect and race priming as ways to reduce the racial bias in annotation, showing that when annotators are made explicitly aware of an AAE tweet's dialect they are significantly less likely to label the tweet as offensive.
translated by 谷歌翻译
仇恨言论等攻击性内容的广泛构成了越来越多的社会问题。 AI工具是支持在线平台的审核过程所必需的。为了评估这些识别工具,需要与不同语言的数据集进行连续实验。 HASOC轨道(仇恨语音和冒犯性内容识别)专用于为此目的开发基准数据。本文介绍了英语,印地语和马拉地赛的Hasoc Subtrack。数据集由Twitter组装。此子系统有两个子任务。任务A是为所有三种语言提供的二进制分类问题(仇恨而非冒犯)。任务B是三个课程(仇恨)仇恨言论,令人攻击和亵渎为英语和印地语提供的细粒度分类问题。总体而言,652名队伍提交了652次。任务A最佳分类算法的性能分别为Marathi,印地语和英语的0.91,0.78和0.83尺寸。此概述介绍了任务和数据开发以及详细结果。提交竞争的系统应用了各种技术。最好的表演算法主要是变压器架构的变种。
translated by 谷歌翻译
仇恨言论与用户生成的内容一起困扰网络空间。本文调查了对话环境在在线仇恨和反语音的注释和检测中的作用,其中将上下文定义为对话线程中的前面评论。我们创建了一个上下文感知的数据集,用于在Reddit评论上进行三向分类任务:仇恨言语,反语音或中立。我们的分析表明,上下文对于识别仇恨和反语音至关重要:大多数评论的人类判断都会根据我们是否向注释者展示上下文而改变。语言分析吸引了人们用来表达仇恨和反语言的语言的见解。实验结果表明,如果考虑到上下文,神经网络将获得明显更好的结果。我们还提出了定性错误分析,将灯光放到(a)何时以及为什么有益的情况下以及(b)考虑到上下文时我们最佳模型造成的其余错误。
translated by 谷歌翻译
仇恨言语检测模型通常在持有的测试集上评估。但是,这有可能因为仇恨言语数据集中越来越有据可查的系统差距和偏见,因此绘制模型性能的不完整且潜在的误导性图片。为了实现更多针对性的诊断见解,最近的研究引入了仇恨言语检测模型的功能测试。但是,这些测试目前仅针对英语内容,这意味着它们无法支持全球数十亿语言所说的其他语言中更有效模型的开发。为了帮助解决这个问题,我们介绍了多语言Hatecheck(MHC),这是一套用于多语言仇恨言语检测模型的功能测试。 MHC涵盖了跨十种语言的34个功能,这比任何其他仇恨语音数据集更多。为了说明MHC的效用,我们训练和测试了高性能的多语言仇恨语音检测模型,并揭示了单语和跨语性应用的关键模型弱点。
translated by 谷歌翻译
The shift of public debate to the digital sphere has been accompanied by a rise in online hate speech. While many promising approaches for hate speech classification have been proposed, studies often focus only on a single language, usually English, and do not address three key concerns: post-deployment performance, classifier maintenance and infrastructural limitations. In this paper, we introduce a new human-in-the-loop BERT-based hate speech classification pipeline and trace its development from initial data collection and annotation all the way to post-deployment. Our classifier, trained using data from our original corpus of over 422k examples, is specifically developed for the inherently multilingual setting of Switzerland and outperforms with its F1 score of 80.5 the currently best-performing BERT-based multilingual classifier by 5.8 F1 points in German and 3.6 F1 points in French. Our systematic evaluations over a 12-month period further highlight the vital importance of continuous, human-in-the-loop classifier maintenance to ensure robust hate speech classification post-deployment.
translated by 谷歌翻译
对仇恨言论和冒犯性语言(HOF)的认可通常是作为一项分类任务,以决定文本是否包含HOF。我们研究HOF检测是否可以通过考虑HOF和类似概念之间的关系来获利:(a)HOF与情感分析有关,因为仇恨言论通常是负面陈述并表达了负面意见; (b)这与情绪分析有关,因为表达的仇恨指向作者经历(或假装体验)愤怒的同时经历(或旨在体验)恐惧。 (c)最后,HOF的一个构成要素是提及目标人或群体。在此基础上,我们假设HOF检测在与这些概念共同建模时,在多任务学习设置中进行了改进。我们将实验基于这些概念的现有数据集(情感,情感,HOF的目标),并在Hasoc Fire 2021英语子任务1A中评估我们的模型作为参与者(作为IMS-Sinai团队)。基于模型选择实验,我们考虑了多个可用的资源和共享任务的提交,我们发现人群情绪语料库,Semeval 2016年情感语料库和犯罪2019年目标检测数据的组合导致F1 =。 79在基于BERT的多任务多任务学习模型中,与Plain Bert的.7895相比。在HASOC 2019测试数据上,该结果更为巨大,而F1中的增加2pp和召回大幅增加。在两个数据集(2019,2021)中,HOF类的召回量尤其增加(2019年数据的6pp和2021数据的3pp),表明MTL具有情感,情感和目标识别是适合的方法可能部署在社交媒体平台中的预警系统。
translated by 谷歌翻译
道德框架和情感会影响各种在线和离线行为,包括捐赠,亲环境行动,政治参与,甚至参与暴力抗议活动。自然语言处理中的各种计算方法(NLP)已被用来从文本数据中检测道德情绪,但是为了在此类主观任务中取得更好的性能,需要大量的手工注销训练数据。事实证明,以前对道德情绪注释的语料库已被证明是有价值的,并且在NLP和整个社会科学中都产生了新的见解,但仅限于Twitter。为了促进我们对道德修辞的作用的理解,我们介绍了道德基础Reddit语料库,收集了16,123个reddit评论,这些评论已从12个不同的子雷迪维特策划,由至少三个训练有素的注释者手工注释,用于8种道德情绪(即护理,相称性,平等,纯洁,权威,忠诚,瘦道,隐含/明确的道德)基于更新的道德基础理论(MFT)框架。我们使用一系列方法来为这种新的语料库(例如跨域分类和知识转移)提供基线道德句子分类结果。
translated by 谷歌翻译