从固定批次的轨迹学习马尔可夫决策过程(MDP)是一个非琐碎的任务,其结果的质量取决于状态行动空间的采样区域的数量和多样性。然而,许多MDP是赋予了不变的奖励和转换函数,相对于当前状态和动作的一些转换。能够检测和利用这些结构不仅可以使用MDP的学习,而且可以利用其随后的最佳控制策略的计算。在这项工作中,我们提出了一种基于密度估计方法的范例,该方法旨在检测MDP动态是不变的状态动作空间的一些已经假设的状态的存在。我们在离散的环形电网环境中和Openai的健身房学习套件的两个臭名昭着的环境中测试了所提出的方法。结果表明,当数据集用通过使用检测到的对称获得的数据增强数据集时,允许更彻底和数据高效地学习转换功能时,模型分配移位减少。
translated by 谷歌翻译
马尔可夫决策过程(MDP)的动态模型的离线估计是一个非琐碎的任务,这大大取决于学习阶段可用的数据。有时,模型的动态相对于当前状态和动作的一些转换是不变的。最近的作品表明,依赖于密度估计方法的专家引导的管道,因为基于深度神经网络的标准化流量有效地检测了确定性环境中的这种结构,包括分类和连续值。可以利用所获取的知识来增加原始数据集,最终导致True和学习模型之间的分布偏移的减少。在这项工作中,我们将范例扩展到解决非确定性MDP,特别是1)我们提出基于统计距离的分类环境中的检测阈值,2)我们在基于Wilcoxon签名的连续环境中引入分布换档的基准。等级统计测试和3)我们表明,在解决学习MDP时,前者的结果会导致性能改进,然后在真实环境中应用最佳政策。
translated by 谷歌翻译
离线强化学习利用大型数据集来训练政策而无需与环境进行互动。然后,可以在互动昂贵或危险的现实世界中部署学习的策略。当前算法过于拟合到训练数据集,并且在部署到环境外的分发概括时,因此表现不佳。我们的目标是通过学习Koopman潜在代表来解决这些限制,这使我们能够推断系统的潜在动态的对称性。然后利用后者在训练期间扩展其他静态离线数据集;这构成了一种新颖的数据增强框架,其反映了系统的动态,因此要被解释为对环境空间的探索。为了获得对称,我们采用Koopman理论,其中根据用于系统的测量功能空间的线性操作员表示非线性动力学,因此可以直接推断动力学的对称性。我们为对对称性的对称性的存在和性质提供了新的理论结果,这些控制系统如加强学习设置。此外,我们对我们的方法进行了多种基准脱机强化学习任务和数据集,包括D4RL,MetaWorld和RoboSuite,并通过使用我们的框架来始终如一地改善Q学习方法的最先进。
translated by 谷歌翻译
我们介绍了一种改进政策改进的方法,该方法在基于价值的强化学习(RL)的贪婪方法与基于模型的RL的典型计划方法之间进行了插值。新方法建立在几何视野模型(GHM,也称为伽马模型)的概念上,该模型对给定策略的折现状态验证分布进行了建模。我们表明,我们可以通过仔细的基本策略GHM的仔细组成,而无需任何其他学习,可以评估任何非马尔科夫策略,以固定的概率在一组基本马尔可夫策略之间切换。然后,我们可以将广义政策改进(GPI)应用于此类非马尔科夫政策的收集,以获得新的马尔可夫政策,通常将其表现优于其先驱。我们对这种方法提供了彻底的理论分析,开发了转移和标准RL的应用,并在经验上证明了其对标准GPI的有效性,对充满挑战的深度RL连续控制任务。我们还提供了GHM培训方法的分析,证明了关于先前提出的方法的新型收敛结果,并显示了如何在深度RL设置中稳定训练这些模型。
translated by 谷歌翻译
在现实世界中,通过弱势政策影响环境可能是昂贵的或非常危险的,因此妨碍了现实世界的加强学习应用。离线强化学习(RL)可以从给定数据集中学习策略,而不与环境进行交互。但是,数据集是脱机RL算法的唯一信息源,并确定学习策略的性能。我们仍然缺乏关于数据集特征如何影响不同离线RL算法的研究。因此,我们对数据集特性如何实现离散动作环境的离线RL算法的性能的全面实证分析。数据集的特点是两个度量:(1)通过轨迹质量(TQ)测量的平均数据集返回和(2)由状态 - 动作覆盖(SACO)测量的覆盖范围。我们发现,禁止政策深度Q网家族的变体需要具有高SACO的数据集来表现良好。将学习策略朝向给定数据集的算法对具有高TQ或SACO的数据集进行了良好。对于具有高TQ的数据集,行为克隆优先级或类似于最好的离线RL算法。
translated by 谷歌翻译
具有很多玩家的非合作和合作游戏具有许多应用程序,但是当玩家数量增加时,通常仍然很棘手。由Lasry和Lions以及Huang,Caines和Malham \'E引入的,平均野外运动会(MFGS)依靠平均场外近似值,以使玩家数量可以成长为无穷大。解决这些游戏的传统方法通常依赖于以完全了解模型的了解来求解部分或随机微分方程。最近,增强学习(RL)似乎有望解决复杂问题。通过组合MFGS和RL,我们希望在人口规模和环境复杂性方面能够大规模解决游戏。在这项调查中,我们回顾了有关学习MFG中NASH均衡的最新文献。我们首先确定最常见的设置(静态,固定和进化)。然后,我们为经典迭代方法(基于最佳响应计算或策略评估)提供了一个通用框架,以确切的方式解决MFG。在这些算法和与马尔可夫决策过程的联系的基础上,我们解释了如何使用RL以无模型的方式学习MFG解决方案。最后,我们在基准问题上介绍了数值插图,并以某些视角得出结论。
translated by 谷歌翻译
在训练数据的分布中评估时,学到的模型和政策可以有效地概括,但可以在分布输入输入的情况下产生不可预测且错误的输出。为了避免在部署基于学习的控制算法时分配变化,我们寻求一种机制将代理商限制为类似于受过训练的国家和行动的机制。在控制理论中,Lyapunov稳定性和控制不变的集合使我们能够保证稳定系统周围系统的控制器,而在机器学习中,密度模型使我们能够估算培训数据分布。我们可以将这两个概念结合起来,产生基于学习的控制算法,这些算法仅使用分配动作将系统限制为分布状态?在这项工作中,我们建议通过结合Lyapunov稳定性和密度估计的概念来做到这一点,引入Lyapunov密度模型:控制Lyapunov函数和密度模型的概括,这些函数和密度模型可以保证代理商在其整个轨迹上保持分布的能力。
translated by 谷歌翻译
合并对称性可以通过定义通过转换相关的数据样本的等效类别来导致高度数据效率和可推广的模型。但是,表征转换如何在输入数据上作用通常很困难,从而限制了模型模型的适用性。我们提出了编码输入空间(例如图像)的学习对称嵌入网络(SENS),我们不知道转换的效果(例如旋转),以在这些操作下以已知方式转换的特征空间。可以通过模棱两可的任务网络端对端训练该网络,以学习明确的对称表示。我们在具有3种不同形式的对称形式的模棱两可的过渡模型的背景下验证了这种方法。我们的实验表明,SENS有助于将模棱两可的网络应用于具有复杂对称表示的数据。此外,相对于全等级和非等价基线的准确性和泛化可以提高准确性和概括。
translated by 谷歌翻译
当国家行动对具有等效的奖励和过渡动态时,动物能够从有限的经验中迅速推断出来。另一方面,现代的强化学习系统必须通过反复试验进行艰苦的学习,以使国家行动对相当于价值 - 需要从其环境中进行过多的大量样本。已经提出了MDP同态,将观察到的环境的MDP降低到抽象的MDP,这可以实现更有效的样本策略学习。因此,当可以先验地构建合适的MDP同构时,已经实现了样本效率的令人印象深刻的提高 - 通常是通过利用执业者对环境对称性的知识来实现​​的。我们提出了一种在离散作用空间中构建同态的新方法,该方法使用部分环境动力学模型来推断哪种状态作用对导致同一状态 - 将状态行动空间的大小减少了一个等于动作空间的基数。我们称此方法等效效果抽象。在GridWorld环境中,我们从经验上证明了等效效果抽象可以提高基于模型的方法的无模型设置和计划效率的样品效率。此外,我们在Cartpole上表明,我们的方法的表现优于学习同构的现有方法,同时使用33倍的培训数据。
translated by 谷歌翻译
我们考虑在一个有限时间范围内的离散时间随机动力系统的联合设计和控制。我们将问题作为一个多步优化问题,在寻求识别系统设计和控制政策的不确定性下,共同最大化所考虑的时间范围内收集的预期奖励总和。转换函数,奖励函数和策略都是参数化的,假设与其参数有所不同。然后,我们引入了一种深度加强学习算法,将策略梯度方法与基于模型的优化技术相结合以解决这个问题。从本质上讲,我们的算法迭代地估计通过Monte-Carlo采样和自动分化的预期返回的梯度,并在环境和策略参数空间中投影梯度上升步骤。该算法称为直接环境和策略搜索(DEPS)。我们评估我们算法在三个环境中的性能,分别在三种环境中进行了一个群众弹簧阻尼系统的设计和控制,分别小型离网电力系统和无人机。此外,我们的算法是针对用于解决联合设计和控制问题的最先进的深增强学习算法的基准测试。我们表明,在所有三种环境中,DEPS至少在或更好地执行,始终如一地产生更高的迭代返回的解决方案。最后,通过我们的算法产生的解决方案也与由算法产生的解决方案相比,不共同优化环境和策略参数,突出显示在执行联合优化时可以实现更高返回的事实。
translated by 谷歌翻译
我们在马尔可夫决策过程的状态空间上提出了一种新的行为距离,并展示使用该距离作为塑造深度加强学习代理的学习言论的有效手段。虽然由于高计算成本和基于样本的算法缺乏缺乏样本的距离,但是,虽然现有的国家相似性通常难以在规模上学习,但我们的新距离解决了这两个问题。除了提供详细的理论分析外,我们还提供了学习该距离的经验证据,与价值函数产生的结构化和信息化表示,包括对街机学习环境基准的强劲结果。
translated by 谷歌翻译
Safe Reinforcement Learning can be defined as the process of learning policies that maximize the expectation of the return in problems in which it is important to ensure reasonable system performance and/or respect safety constraints during the learning and/or deployment processes. We categorize and analyze two approaches of Safe Reinforcement Learning. The first is based on the modification of the optimality criterion, the classic discounted finite/infinite horizon, with a safety factor. The second is based on the modification of the exploration process through the incorporation of external knowledge or the guidance of a risk metric. We use the proposed classification to survey the existing literature, as well as suggesting future directions for Safe Reinforcement Learning.
translated by 谷歌翻译
随着自动驾驶行业的发展,自动驾驶汽车群体的潜在相互作用也随之增长。结合人工智能和模拟的进步,可以模拟此类组,并且可以学习控制内部汽车的安全模型。这项研究将强化学习应用于多代理停车场的问题,在那里,汽车旨在有效地停车,同时保持安全和理性。利用强大的工具和机器学习框架,我们以马尔可夫决策过程的形式与独立学习者一起设计和实施灵活的停车环境,从而利用多代理通信。我们实施了一套工具来进行大规模执行实验,从而取得了超过98.1%成功率的高达7辆汽车的模型,从而超过了现有的单代机构模型。我们还获得了与汽车在我们环境中表现出的竞争性和协作行为有关的几个结果,这些行为的密度和沟通水平各不相同。值得注意的是,我们发现了一种没有竞争的合作形式,以及一种“泄漏”的合作形式,在没有足够状态的情况下,代理商进行了协作。这种工作在自动驾驶和车队管理行业中具有许多潜在的应用,并为将强化学习应用于多机构停车场提供了几种有用的技术和基准。
translated by 谷歌翻译
当环境稀疏和非马克维亚奖励时,使用标量奖励信号的训练加强学习(RL)代理通常是不可行的。此外,在训练之前对这些奖励功能进行手工制作很容易指定,尤其是当环境的动态仅部分知道时。本文提出了一条新型的管道,用于学习非马克维亚任务规格,作为简洁的有限状态“任务自动机”,从未知环境中的代理体验情节中。我们利用两种关键算法的见解。首先,我们通过将其视为部分可观察到的MDP并为隐藏的Markov模型使用现成的算法,从而学习了由规范的自动机和环境MDP组成的产品MDP,该模型是由规范的自动机和环境MDP组成的。其次,我们提出了一种从学习的产品MDP中提取任务自动机(假定为确定性有限自动机)的新方法。我们学到的任务自动机可以使任务分解为其组成子任务,从而提高了RL代理以后可以合成最佳策略的速率。它还提供了高级环境和任务功能的可解释编码,因此人可以轻松地验证代理商是否在没有错误的情况下学习了连贯的任务。此外,我们采取步骤确保学识渊博的自动机是环境不可静止的,使其非常适合用于转移学习。最后,我们提供实验结果,以说明我们在不同环境和任务中的算法的性能及其合并先前的领域知识以促进更有效学习的能力。
translated by 谷歌翻译
学习涉及时变和不断发展的系统动态的控制政策通常对主流强化学习算法构成了巨大的挑战。在大多数标准方法中,通常认为动作是一组刚性的,固定的选择,这些选择以预定义的方式顺序应用于状态空间。因此,在不诉诸于重大学习过程的情况下,学识渊博的政策缺乏适应动作集和动作的“行为”结果的能力。此外,标准行动表示和动作引起的状态过渡机制固有地限制了如何将强化学习应用于复杂的现实世界应用中,这主要是由于所得大的状态空间的棘手性以及缺乏概括的学术知识对国家空间未知部分的政策。本文提出了一个贝叶斯味的广义增强学习框架,首先建立参数动作模型的概念,以更好地应对不确定性和流体动作行为,然后将增强领域的概念作为物理启发的结构引入通过“极化体验颗粒颗粒建立) “维持在学习代理的工作记忆中。这些粒子有效地编码了以自组织方式随时间演变的动态学习体验。在强化领域之上,我们将进一步概括策略学习过程,以通过将过去的记忆视为具有隐式图结构来结合高级决策概念,在该结构中,过去的内存实例(或粒子)与决策之间的相似性相互联系。定义,因此,可以应用“关联记忆”原则来增强学习代理的世界模型。
translated by 谷歌翻译
在动态编程(DP)和强化学习(RL)中,代理商学会在通过由Markov决策过程(MDP)建模的环境中顺序交互来实现预期的长期返回。更一般地在分布加强学习(DRL)中,重点是返回的整体分布,而不仅仅是其期望。虽然基于DRL的方法在RL中产生了最先进的性能,但它们涉及尚未充分理解的额外数量(与非分布设置相比)。作为第一个贡献,我们介绍了一类新的分类运营商,以及一个实用的DP算法,用于策略评估,具有强大的MDP解释。实际上,我们的方法通过增强的状态空间重新重新重新重新重新重新格式化,其中每个状态被分成最坏情况的子变量,并且最佳的子变电站,其值分别通过安全和危险的策略最大化。最后,我们派生了分配运营商和DP算法解决了一个新的控制任务:如何区分安全性的最佳动作,以便在最佳政策空间中打破联系?
translated by 谷歌翻译
安全政策改进(SPI)是在安全关键应用中脱机加强学习的重要技术,因为它以很高的可能性改善了行为政策。我们根据如何利用国家行动对的不确定性将各种SPI方法分为两组。为了关注软SPIBB(通过软基线自举的安全政策改进)算法,我们表明他们对被证明安全的主张不坚持。基于这一发现,我们开发了适应性,Adv-Soft SpibB算法,并证明它们是可以安全的。在两个基准上进行的广泛实验中,启发式适应性较低的SPOBB在所有SPIBB算法中都能表现出最佳性能。我们还检查了可证明的安全算法的安全保证,并表明有大量数据是必要的,以使安全界限在实践中变得有用。
translated by 谷歌翻译
脱机强化学习 - 从一批数据中学习策略 - 是难以努力的:如果没有制造强烈的假设,它很容易构建实体算法失败的校长。在这项工作中,我们考虑了某些现实世界问题的财产,其中离线强化学习应该有效:行动仅对一部分产生有限的行动。我们正规化并介绍此动作影响规律(AIR)财产。我们进一步提出了一种算法,该算法假定和利用AIR属性,并在MDP满足空气时绑定输出策略的子优相。最后,我们展示了我们的算法在定期保留的两个模拟环境中跨越不同的数据收集策略占据了现有的离线强度学习算法。
translated by 谷歌翻译
强化学习目睹了最近在量子编程中的各种任务中的应用。基本的假设是这些任务可以建模为马尔可夫决策过程(MDP)。在这里,我们通过探索量子编程中的两个基本任务的后果来研究该假设的可行性:状态制备和门编译。通过形成离散的MDP,专门针对单量的情况(无论有没有噪声),我们可以通过策略迭代准确地为最佳策略求解。我们找到与最短门序列相对应的最佳路径,以准备状态或编译门,直至某些目标精度。例如,我们发现$ h $和$ t $门的序列长达$ 11 $生产$ \ sim 99 \%$ $ fidelity表格$(ht)^{n} | 0 \ rangle $值高达$ n = 10^{10} $。在存在门噪声的情况下,我们演示了最佳政策如何适应嘈杂的门的影响,以实现更高的状态忠诚度。我们的工作表明,人们可以将离散,随机和马尔可夫的性质强加于连续,确定性和非马克维亚量子演化,并提供理论上的洞察力,以了解为什么可以成功地使用强化学习来找到量子编程中的最佳短门序列。
translated by 谷歌翻译
Offline reinforcement learning (RL) is suitable for safety-critical domains where online exploration is too costly or dangerous. In safety-critical settings, decision-making should take into consideration the risk of catastrophic outcomes. In other words, decision-making should be risk-sensitive. Previous works on risk in offline RL combine together offline RL techniques, to avoid distributional shift, with risk-sensitive RL algorithms, to achieve risk-sensitivity. In this work, we propose risk-sensitivity as a mechanism to jointly address both of these issues. Our model-based approach is risk-averse to both epistemic and aleatoric uncertainty. Risk-aversion to epistemic uncertainty prevents distributional shift, as areas not covered by the dataset have high epistemic uncertainty. Risk-aversion to aleatoric uncertainty discourages actions that may result in poor outcomes due to environment stochasticity. Our experiments show that our algorithm achieves competitive performance on deterministic benchmarks, and outperforms existing approaches for risk-sensitive objectives in stochastic domains.
translated by 谷歌翻译