计算机愿景中的基本问题是一组点对是否是位于两个相机前面的场景的图像。这种场景和相机一起被称为对角对的手性重建。在本文中,我们提供了一个完整的K点对分类,其中存在手性重建。手性重建的存在相当于某些半武装集的非空虚。最多三点对,我们证明了手性重建总是存在,而五个或更多点对没有手性重建的一组是Zariski-Chense。我们表明,对于五个通用点对,手性区域是由27个实线的三方表面上的Schl \“AFLI双六六的线段界定。四点对具有手性重建,除非它们属于两个非通用组合类型,在这种情况下,他们可能或可能不是。
translated by 谷歌翻译
我们引入了与针孔摄像机中图像形成相关的代数几何对象的地图集。地图集的节点是代数品种或它们的消失理想,分别通过投影,消除,限制或专业化相互关联。该地图集为研究3D计算机视觉中的问题提供了一个统一的框架。我们通过完全表征来自三角剖分问题的部分地图集来启动地图集的研究。我们以几个空旷的问题和地图集的概括结束。
translated by 谷歌翻译
从运动的结构问题涉及从一组二维图像中恢复对象的三维结构。通常,如果提供了足够的图像和图像点,则所有信息都可以唯一恢复,但是存在唯一恢复的某些情况是不可能的;这些称为关键配置。在本文中,我们使用代数方法来研究三个投影相机的关键配置。我们表明,所有关键配置都位于二次曲面的交叉点上,并究竟分类了哪个交叉点构成关键配置。
translated by 谷歌翻译
从运动的结构问题涉及从一组二维图像中恢复对象的三维结构。通常,如果提供了足够的图像和图像点,则可以唯一地恢复所有信息,但是存在唯一恢复的情况下是不可能的情况;这些称为关键配置。在本文中,我们使用代数方法来研究两个投影相机的关键配置。我们表明,所有关键配置都位于二次表面上,并确切地分类哪个Quadrics构成关键配置。本文还描述了当独特的重建不可能时不同重建之间的关系。
translated by 谷歌翻译
众所周知,具有重新激活函数的完全连接的前馈神经网络可以表示的参数化函数家族恰好是一类有限的分段线性函数。鲜为人知的是,对于Relu神经网络的每个固定架构,参数空间都允许对称的正维空间,因此,在任何给定参数附近的局部功能维度都低于参数维度。在这项工作中,我们仔细地定义了功能维度的概念,表明它在Relu神经网络函数的参数空间中是不均匀的,并继续进行[14]和[5]中的调查 - 何时在功能维度实现其理论时最大。我们还研究了从参数空间到功能空间的实现图的商空间和纤维,提供了断开连接的纤维的示例,功能尺寸为非恒定剂的纤维以及对称组在其上进行非转换的纤维。
translated by 谷歌翻译
在本文中,我们研究了多视图几何中基本和基本矩阵估计的5-和7点问题的数值不太稳定性。在这两种情况下,我们表征了末极估计的条件号是无限的呈现不良世界场景。我们还以给定的图像数据表征不良实例。为了达到这些结果,我们提出了一般的框架,用于分析基于Riemannian歧管的多视图几何体中最小问题的调理。综合性和现实世界数据的实验然后揭示了一个引人注目的结论:在结构 - 从 - 动作(SFM)中的随机样本共识(RANSAC)不仅用于过滤输出异常值,而且RANSAC还选择用于良好的良好的图像数据,足够分离我们的理论预测的不良座位。我们的研究结果表明,在未来的工作中,人们可以试图通过仅测试良好的图像数据来加速和增加Ransac的成功。
translated by 谷歌翻译
在此备忘录中,我们开发了一般框架,它允许同时研究$ \ MathBB R ^ D $和惠特尼在$ \ Mathbb r的离散和非离散子集附近的insoctry扩展问题附近的标签和未标记的近对准数据问题。^ d $与某些几何形状。此外,我们调查了与集群,维度减少,流形学习,视觉以及最小的能量分区,差异和最小最大优化的相关工作。给出了谐波分析,计算机视觉,歧管学习和与我们工作的信号处理中的众多开放问题。本发明内容中的一部分工作基于纸张中查尔斯Fefferman的联合研究[48],[49],[50],[51]。
translated by 谷歌翻译
我们研究由线性卷积神经网络(LCN)代表的功能家族。这些函数形成了从输入空间到输出空间的线性地图集的半代数子集。相比之下,由完全连接的线性网络表示的函数家族形成代数集。我们观察到,LCN代表的功能可以通过接受某些因素化的多项式来识别,我们使用此视角来描述网络体系结构对所得功能空间几何形状的影响。我们进一步研究了在LCN上的目标函数的优化,分析了功能空间和参数空间中的临界点,并描述了梯度下降的动态不变性。总体而言,我们的理论预测,LCN的优化参数通常对应于跨层的重复过滤器,或可以分解为重复过滤器的过滤器。我们还进行了数值和符号实验,以说明我们的结果,并对小体系结构的景​​观进行深入分析。
translated by 谷歌翻译
我们考虑从有限许多支持功能评估中重建具有固定面部方向的多部位的任务。我们表明,对于固定的单一规范风扇,由凸二次程序给出最小二乘估计。我们研究了解决方案集的几何形状,并在这种情况下为重建的唯一性提供了组合特征。我们提供一种算法,在温和的假设下会聚到未知的输入形状,因为噪声支持函数评估的数量增加。如果拆除了对正常风扇的限制,我们还讨论了我们结果的限制。
translated by 谷歌翻译
支持向量机(SVM)是一种算法,该算法找到了超平面,最佳地将标记的数据点以$ \ mathbb {r} ^ n $分为正面和负类。该分离超平面裕度上的数据点称为支持向量。我们将支持向量的可能配置连接到Radon的定理,这提供了一组点可以分为两个类(正负)的保证,其凸壳相交。如果将正和负支持向量的凸壳投射到分离超平面上,则仅在超平面是最佳的,则投影在至少一个点中相交。此外,通过特定类型的一般位置,我们表明(a)支撑载体的投影凸船体在恰好一个点中相交,(b)支撑载体在扰动下稳定,(c)最多有$ n + 1 $支持向量,(d)每一个高达$ n + 1 $的支持向量是可能的。最后,我们执行研究预期的支持向量数及其配置的计算机模拟,用于随机生成的数据。我们观察到,随着该类型的随机生成的数据增加的距离增加,具有两个支持向量的配置成为最可能的配置。
translated by 谷歌翻译
We study the problem of finding elements in the intersection of an arbitrary conic variety in $\mathbb{F}^n$ with a given linear subspace (where $\mathbb{F}$ can be the real or complex field). This problem captures a rich family of algorithmic problems under different choices of the variety. The special case of the variety consisting of rank-1 matrices already has strong connections to central problems in different areas like quantum information theory and tensor decompositions. This problem is known to be NP-hard in the worst-case, even for the variety of rank-1 matrices. Surprisingly, despite these hardness results we give efficient algorithms that solve this problem for "typical" subspaces. Here, the subspace $U \subseteq \mathbb{F}^n$ is chosen generically of a certain dimension, potentially with some generic elements of the variety contained in it. Our main algorithmic result is a polynomial time algorithm that recovers all the elements of $U$ that lie in the variety, under some mild non-degeneracy assumptions on the variety. As corollaries, we obtain the following results: $\bullet$ Uniqueness results and polynomial time algorithms for generic instances of a broad class of low-rank decomposition problems that go beyond tensor decompositions. Here, we recover a decomposition of the form $\sum_{i=1}^R v_i \otimes w_i$, where the $v_i$ are elements of the given variety $X$. This implies new algorithmic results even in the special case of tensor decompositions. $\bullet$ Polynomial time algorithms for several entangled subspaces problems in quantum entanglement, including determining $r$-entanglement, complete entanglement, and genuine entanglement of a subspace. While all of these problems are NP-hard in the worst case, our algorithm solves them in polynomial time for generic subspaces of dimension up to a constant multiple of the maximum possible.
translated by 谷歌翻译
同态传感是一个最近的代数几何框架,它在给定的线性图集合中研究了线性子空间中点的独特恢复。在坐标投影组成的情况下,它已经成功地解释了这种恢复,这是被称为未标记感应的应用程序中的重要实例,其中模拟了不秩序不正确且缺少值的数据。在本文中,我们提供更严格,更简单的条件,以保证单个空格情况的唯一恢复,将结果扩展到子空间布置的情况,并证明单个子空间中的唯一恢复在噪声下是本地稳定的。我们将结果专注于几个同态感测的示例,例如真实的相位检索和未标记的传感。在这样做的情况下,我们以统一的方式获得了保证这些示例的独特恢复的条件,这些示例通常是通过文献中的各种技术来知道的,以及用于稀疏和未签名版本的未标记感应的新颖条件。同样,我们的噪声结果也意味着未标记的传感中的独特恢复在局部稳定。
translated by 谷歌翻译
In non-smooth stochastic optimization, we establish the non-convergence of the stochastic subgradient descent (SGD) to the critical points recently called active strict saddles by Davis and Drusvyatskiy. Such points lie on a manifold $M$ where the function $f$ has a direction of second-order negative curvature. Off this manifold, the norm of the Clarke subdifferential of $f$ is lower-bounded. We require two conditions on $f$. The first assumption is a Verdier stratification condition, which is a refinement of the popular Whitney stratification. It allows us to establish a reinforced version of the projection formula of Bolte \emph{et.al.} for Whitney stratifiable functions, and which is of independent interest. The second assumption, termed the angle condition, allows to control the distance of the iterates to $M$. When $f$ is weakly convex, our assumptions are generic. Consequently, generically in the class of definable weakly convex functions, the SGD converges to a local minimizer.
translated by 谷歌翻译
让F:R ^ N - > R是前馈RELU神经网络。众所周知,对于任何选择参数,F是连续和分段(仿射)线性的。我们为有系统调查提供了一些基础,用于系统的架构如何影响其可能的决策区域的几何和拓扑以进行二进制分类任务。在差分拓扑中顺利函数的经典进展之后,我们首先定义通用,横向relu神经网络的概念,并显示几乎所有的Relu网络都是通用的和横向的。然后,我们在F的域中定义了一个部分取向的线性1-复合物,并识别该复合物的属性,从而产生妨碍决策区域的有界连接分量的障碍物。我们使用该阻塞来证明具有单个隐藏的尺寸层(N + 1)的通用横向Relu网络F:R ^ N - > R的决策区域可以不具有多于一个有界连接的组件。
translated by 谷歌翻译
机器学习通常以经典的概率理论为前提,这意味着聚集是基于期望的。现在有多种原因可以激励人们将经典概率理论作为机器学习的数学基础。我们系统地检查了一系列强大而丰富的此类替代品,即各种称为光谱风险度量,Choquet积分或Lorentz规范。我们提出了一系列的表征结果,并演示了使这个光谱家族如此特别的原因。在此过程中,我们证明了所有连贯的风险度量的自然分层,从它们通过利用重新安排不变性Banach空间理论的结果来诱导的上层概率。我们凭经验证明了这种新的不确定性方法如何有助于解决实用的机器学习问题。
translated by 谷歌翻译
本文是从运动问题的以下非刚性结构的理论研究。可以从参数变形点集的单眼视图计算什么?我们对具有校准和未校准相机的仿射和多项式变形来对待该问题的各种变化。我们表明,通常需要至少三个具有准相同的两种变形的图像,以便具有点结构的有限溶液并计算一些简单的示例。
translated by 谷歌翻译
我们认为,从其嘈杂的瞬间信息中,在任何维度上学习$ k $ spike混合物的稀疏力矩问题。我们使用运输距离来测量学习混合物的准确性。先前的算法要么假设某些分离假设,使用更多的恢复力矩,要么在(超级)指数时间内运行。我们针对一维问题的算法(也称为稀疏Hausdorff Moment问题)是经典Prony方法的强大版本,我们的贡献主要在于分析。我们比以前的工作进行了全球和更严格的分析(分析了Prony方法的中间结果的扰动)。有用的技术成分是由Vandermonde矩阵定义的线性系统与Schur多项式之间的连接,这使我们能够提供独立于分离的紧密扰动,并且在其他情况下可能很有用。为了解决高维问题,我们首先通过将1维算法和分析扩展到复数来解决二维问题。我们针对高维情况的算法通过将混合物的1-D投影与随机矢量和一组混合物的一组2D投影来确定每个尖峰的坐标。我们的结果在学习主题模型和高斯混合物中有应用,这意味着改善了样本复杂性结果或在先前的工作中运行时间。
translated by 谷歌翻译
在本文中,我们研究了与具有多种激活函数的浅神经网络相对应的变异空间的近似特性。我们介绍了两个主要工具,用于估计这些空间的度量熵,近似率和$ n $宽度。首先,我们介绍了平滑参数化词典的概念,并在非线性近似速率,度量熵和$ n $ widths上给出了上限。上限取决于参数化的平滑度。该结果适用于与浅神经网络相对应的脊功能的字典,并且在许多情况下它们的现有结果改善了。接下来,我们提供了一种方法,用于下限度量熵和$ n $ widths的变化空间,其中包含某些类别的山脊功能。该结果给出了$ l^2 $ approximation速率,度量熵和$ n $ widths的变化空间的急剧下限具有界变化的乙状结激活函数。
translated by 谷歌翻译
这项调查旨在提供线性模型及其背后的理论的介绍。我们的目标是对读者进行严格的介绍,并事先接触普通最小二乘。在机器学习中,输出通常是输入的非线性函数。深度学习甚至旨在找到需要大量计算的许多层的非线性依赖性。但是,这些算法中的大多数都基于简单的线性模型。然后,我们从不同视图中描述线性模型,并找到模型背后的属性和理论。线性模型是回归问题中的主要技术,其主要工具是最小平方近似,可最大程度地减少平方误差之和。当我们有兴趣找到回归函数时,这是一个自然的选择,该回归函数可以最大程度地减少相应的预期平方误差。这项调查主要是目的的摘要,即线性模型背后的重要理论的重要性,例如分布理论,最小方差估计器。我们首先从三种不同的角度描述了普通的最小二乘,我们会以随机噪声和高斯噪声干扰模型。通过高斯噪声,该模型产生了可能性,因此我们引入了最大似然估计器。它还通过这种高斯干扰发展了一些分布理论。最小二乘的分布理论将帮助我们回答各种问题并引入相关应用。然后,我们证明最小二乘是均值误差的最佳无偏线性模型,最重要的是,它实际上接近了理论上的极限。我们最终以贝叶斯方法及以后的线性模型结束。
translated by 谷歌翻译
通过使用系统理论方法来解决,将隐藏的马尔可夫模型(HMM)降低到一个较小的维度的问题,该问题通过使用系统理论方法来解决相同的边缘,通过利用适当的代数表示概率空间的代数来解决HMM。我们提出了两种算法,这些算法返回由随机投影运算符获得的粗粒等效的HMM:第一返回模型,这些模型可重现给定输出过程的单个时间分布,而在第二个(多时间)分布中,则保留了第二个模型。还原方法不仅利用了观察到的输出的结构,而且还利用了后者的初始条件,每当后者已知或属于给定的子类时。最佳算法是针对一类HMM(即可观察到的)得出的。在一般情况下,我们提出的算法为我们分析的所有示例产生了最小的模型,并猜测它们的最优性。
translated by 谷歌翻译