我们探索在线推荐系统中的隐藏反馈循环效果。反馈循环导致在线多武装强盗(MAB)建议的降低,以小额子集和覆盖和新奇损失。我们研究用户兴趣的不确定性和噪声如何影响反馈循环的存在。首先,我们表明用户兴趣中的无偏见的添加剂随机噪声不会阻止反馈循环。其次,我们证明重置用户兴趣的非零概率足以限制反馈循环并估计效果的大小。我们的实验证实了四个强盗算法的模拟环境中的理论发现。
translated by 谷歌翻译
推荐系统正面临审查,因为它们对我们可以获得的机会的影响越来越大。目前对公平的审计仅限于敏感群体水平的粗粒度评估。我们建议审核嫉妒 - 狂喜,一个与个别偏好对齐的更精细的标准:每个用户都应该更喜欢他们的建议给其他用户的建议。由于审计要求估计用户超出现有建议的用户的偏好,因此我们将审计作为多武装匪徒的新纯粹探索问题。我们提出了一种采样的效率算法,具有理论上的保证,它不会恶化用户体验。我们还研究了现实世界推荐数据集实现的权衡。
translated by 谷歌翻译
我们考虑了一个特殊的匪徒问题的情况,即批处理匪徒,其中代理在一定时间段内观察批次的响应。与以前的工作不同,我们考虑了一个更实际相关的以批量学习为中心的情况。也就是说,我们提供了政策不足的遗憾分析,并为候选政策的遗憾展示了上和下限。我们的主要理论结果表明,批处理学习的影响是相对于在线行为的遗憾,批处理大小的多重因素。首先,我们研究了随机线性匪徒的两个设置:有限且无限多手臂的土匪。尽管两种设置的遗憾界限都是相同的,但前者的设置结果在温和的假设下保持。另外,我们为2臂匪徒问题作为重要见解提供了更强大的结果。最后,我们通过进行经验实验并反思最佳批量选择来证明理论结果的一致性。
translated by 谷歌翻译
我们考虑了个性化新闻推荐的问题,每个用户都以顺序消费新闻。现有的个性化新闻推荐方法的重点是利用用户兴趣,而忽略了推荐中的探索,从而导致反馈循环并长期损害了建议质量。我们基于上下文土匪推荐策略,自然可以解决剥削 - 探索权衡取舍。主要挑战是探索大规模项目空间并利用不确定性的深层表示的计算效率。我们提出了一个两阶段的分层主题,新的深层上下文强盗框架,以在有许多新闻项目时有效地学习用户偏好。我们为用户和新闻使用深度学习表示形式,并将神经上限限制(UCB)策略推广到广义添加剂UCB和BILINEAR UCB。大规模新闻建议数据集的经验结果表明,我们提出的政策是有效的,并且表现优于基线匪徒政策。
translated by 谷歌翻译
设计为与时间变化的偏好保持一致的内容的推荐系统需要正确地计算建议对人类行为和心理状况的反馈影响。我们认为,建模建议对人们偏好的影响必须基于心理合理的模型。我们为开发接地动态偏好模型提供了一种方法。我们通过模型来证明这种方法,这些模型从心理学文献中捕获了三种经典效果:裸露,操作条件和享乐调整。我们进行基于仿真的研究,以表明心理模型表现出可以为系统设计提供信息的不同行为。我们的研究对建议系统中的动态用户建模有两个直接影响。首先,我们概述的方法广泛适用于心理基础动态偏好模型。它使我们能够根据他们对心理基础及其难以置信的预测的有限讨论来批评最近的贡献。其次,我们讨论动态偏好模型对建议系统评估和设计的含义。在一个示例中,我们表明参与度和多样性指标可能无法捕获理想的建议系统性能。
translated by 谷歌翻译
考虑在线学习算法同时做出决策并从反馈中学习。此类算法被广泛部署在产品和数字内容的推荐系统中。本文展示了在线学习算法偏见的偏低替代方案,以及它如何塑造建议系统的需求。首先,我们考虑$ k $武装的土匪。我们证明,$ \ varepsilon $ - 果岭选择一个无风险的手臂,而不是一个具有均等预期奖励的风险臂,概率是任意接近一个的概率。这是对不良奖励估计的武器采样的结果。通过实验,我们表明其他在线学习算法也表现出风险规避。在推荐系统环境中,我们表明,该算法对用户的嘈杂奖励减少的内容受到算法的青睐。结合使战略内容创建者朝着相似的预期质量的内容驱动战略性创建者的平衡力,对内容的优势不一定更好,挥发性较小,被夸大了。
translated by 谷歌翻译
大多数用于边缘计算的强化学习(RL)推荐系统必须在推荐选择期间同步,或者依赖于算法的未经警告拼凑集合。在这项工作中,我们构建了异步凝固策略梯度算法\ citep {kostas2020aSynchronchronous},为此问题提出了一个原则的解决方案。我们提出的算法类可以通过Internet分发,并实时地运行。当给定边缘无法响应具有足够速度的数据请求时,这不是问题;该算法旨在在边缘设置中函数和学习,网络问题是此设置的一部分。结果是一个原则性的理论地接地的RL算法,旨在分布在该异步环境中并学习。在这项工作中,我们详细描述了这种算法和建议的架构类,并且证明它们在异步设置中的实践中运行良好,即使网络质量降低。
translated by 谷歌翻译
我们考虑了一个特殊的强盗问题,即批量炸匪。通过推荐制度和电子商务平台的自然限制,我们假设学习代理观察在一定时间内在分组中分批的响应。与以前的工作不同,我们考虑一个更实际相关的批量学习场景。我们为候选政策的遗憾提供了政策 - 不可知的遗憾分析,并展示上下界限。我们的主要理论结果表明,批量学习的影响可以根据在线行为来衡量。最后,我们通过进行经验实验并反映最佳批量尺寸选择来证明理论结果的一致性。
translated by 谷歌翻译
由于其可扩展性,两阶段推荐人被今天的许多最大的在线平台使用,包括YouTube,Linkedin和Pinterest。这些系统以两个步骤产生建议:(i)多个提名者调整为低预测延迟,从整个项目池中预先选择一个小候选者的小组; (ii)较慢但更准确的排名进一步缩小指定项目,并为用户服务。尽管他们受欢迎,但两级推荐人的文献相对稀缺,算法经常被视为他们的部分的总和。这种治疗假定了通过单独组分的行为解释了两级性能。事实并非如此:使用综合性和现实世界数据,我们证明了排名人员和提名人之间的互动大大影响了整体性能。通过这些调查结果,我们推出了概括下限,表明独立提名培训可能导致均匀随机建议的表现。我们发现,仔细设计项目池,每个项目池分配给不同的提名人,减轻了这些问题。随着手动搜索良好的池分配很难,我们建议使用基于专家的混合方法来学习一个。这显着改善了K的精度和召回。
translated by 谷歌翻译
我们考虑激励探索:一种多臂匪徒的版本,其中武器的选择由自私者控制,而算法只能发布建议。该算法控制信息流,信息不对称可以激励代理探索。先前的工作达到了最佳的遗憾率,直到乘法因素,这些因素根据贝叶斯先验而变得很大,并在武器数量上成倍规模扩展。采样每只手臂的一个更基本的问题一旦遇到了类似的因素。我们专注于激励措施的价格:出于激励兼容的目的,绩效的损失,广泛解释为。我们证明,如果用足够多的数据点初始化,则标准的匪徒汤普森采样是激励兼容的。因此,当收集这些数据点时,由于激励措施的绩效损失仅限于初始回合。这个问题主要降低到样本复杂性的问题:需要多少个回合?我们解决了这个问题,提供了匹配的上限和下限,并在各种推论中实例化。通常,最佳样品复杂性在“信念强度”中的武器数量和指数中是多项式。
translated by 谷歌翻译
Personalized web services strive to adapt their services (advertisements, news articles, etc.) to individual users by making use of both content and user information. Despite a few recent advances, this problem remains challenging for at least two reasons. First, web service is featured with dynamically changing pools of content, rendering traditional collaborative filtering methods inapplicable. Second, the scale of most web services of practical interest calls for solutions that are both fast in learning and computation.In this work, we model personalized recommendation of news articles as a contextual bandit problem, a principled approach in which a learning algorithm sequentially selects articles to serve users based on contextual information about the users and articles, while simultaneously adapting its article-selection strategy based on user-click feedback to maximize total user clicks.The contributions of this work are three-fold. First, we propose a new, general contextual bandit algorithm that is computationally efficient and well motivated from learning theory. Second, we argue that any bandit algorithm can be reliably evaluated offline using previously recorded random traffic. Finally, using this offline evaluation method, we successfully applied our new algorithm to a Yahoo! Front Page Today Module dataset containing over 33 million events. Results showed a 12.5% click lift compared to a standard context-free bandit algorithm, and the advantage becomes even greater when data gets more scarce.
translated by 谷歌翻译
本文提出了一种新的培训建议系统的方法,称为基于偏差的学习。建议者和理性用户有不同的知识。推荐人通过观察用户在收到建议时采取的行动来学习用户知识。最终学习如果推荐人总是建议选择:在推荐人完成学习之前,用户开始盲目地遵循建议,他们的选择并不能反映他们的知识。如果推荐人预测多种替代方案将产生类似的回报,那么学习率和社会福利会大大提高。
translated by 谷歌翻译
多臂匪徒(MAB)提供了一种原则性的在线学习方法,以达到探索和剥削之间的平衡。由于表现出色和反馈学习低,没有学习在多种情况下采取行动,因此多臂匪徒在诸如推荐系统等应用程序中引起了广泛的关注。同样,在推荐系统中,协作过滤(CF)可以说是推荐系统中最早,最具影响力的方法。至关重要的是,新用户和不断变化的推荐项目池是推荐系统需要解决的挑战。对于协作过滤,经典方法是训练模型离线,然后执行在线测试,但是这种方法无法再处理用户偏好的动态变化,即所谓的冷启动。那么,如何在没有有效信息的情况下有效地向用户推荐项目?为了解决上述问题,已经提出了一个基于多臂强盗的协作过滤推荐系统,名为BanditMF。 BANDITMF旨在解决多军强盗算法和协作过滤中的两个挑战:(1)如何在有效信息稀缺的条件下解决冷启动问题以进行协作过滤,(2)强大社会关系域中的强盗算法问题是由独立估计与每个用户相关的未知参数并忽略用户之间的相关性引起的。
translated by 谷歌翻译
工业推荐系统处理极大的行动空间 - 许多数百万的项目推荐。此外,他们需要为数十亿用户服务,他们在任何时间点都是独一无止的,制作复杂的用户状态空间。幸运的是,可以学习大量记录的隐式反馈(例如,用户点击,停留时间)。然而,从记录的反馈中学习,才受到仅通过以前版本的推荐器选择的建议的反馈而导致的偏差。在这项工作中,我们展示了在YouTube的生产Top-K推荐系统中解决此类偏差的一般配方,以策略梯度为基础的算法,即加强。本文的贡献是:(1)缩放到生产推荐系统,以数百万的订单为行动空间; (2)申请违规纠正以解决从多种行为策略收集的记录反馈中学习数据偏差; (3)提出新的Top-K违规纠正,以占我们的政策一次推荐多个项目; (4)展示勘探的价值。我们展示了我们通过一系列模拟和youtube上的多个实时实验的方法。
translated by 谷歌翻译
在本文中,我们研究了汤普森采样(TS)方法的应用到随机组合多臂匪徒(CMAB)框架中。当所有基本臂的结果分布都是独立的,并获得$ o(m \ log k _ {\ max} \ log t / \ delta_时,我们首先分析一般CMAB模型的标准TS算法。 {\ min})$,其中$ m $是基本武器的数量,$ k _ {\ max} $是最大的超级臂的大小,$ t $是时间范围,而$ \ delta _ {\ min} $是最佳解决方案的预期奖励与任何非最佳解决方案之间的最小差距。这种遗憾的上限比$ o(m(\ log k _ {\ max})^2 \ log t / \ delta _ {\ min})$更好。此外,我们的新颖分析技术可以帮助收紧其他基于UCB的政策(例如ESC)的遗憾界限,因为我们改善了计算累积遗憾的方法。然后,我们考虑Matroid Bandit设置(CMAB模型的特殊类别),在这里我们可以删除跨武器的独立性假设,并实现与下限匹配的遗憾上限。除了遗憾的上限外,我们还指出,一个人不能直接替换确切的离线甲骨文(将离线问题实例的参数作为输入,并在此实例下输出确切的最佳操作),用TS算法中的近似oracle替换了ts算法的近似值。甚至经典的mAb问题。最后,我们使用一些实验来显示TS遗憾与其他现有算法之间的比较,实验结果表明TS优于现有基准。
translated by 谷歌翻译
Thompson sampling has proven effective across a wide range of stationary bandit environments. However, as we demonstrate in this paper, it can perform poorly when applied to nonstationary environments. We show that such failures are attributed to the fact that, when exploring, the algorithm does not differentiate actions based on how quickly the information acquired loses its usefulness due to nonstationarity. Building upon this insight, we propose predictive sampling, which extends Thompson sampling to do this. We establish a Bayesian regret bound and establish that, in nonstationary bandit environments, the regret incurred by Thompson sampling can far exceed that of predictive sampling. We also present implementations of predictive sampling that scale to complex bandit environments of practical interest in a computationally tractable manner. Through simulations, we demonstrate that predictive sampling outperforms Thompson sampling and other state-of-the-art algorithms across a wide range of nonstationary bandit environments.
translated by 谷歌翻译
我们考虑腐烂奖励的无限多臂匪徒问题,其中手臂的平均奖励是根据任意趋势在每次拉动的手臂上减小的,最大腐烂速率$ \ varrho = o(1)$。我们表明,这个学习问题具有$ \ omega(\ max \ {\ varrho^{1/3} t,\ sqrt {t} \})$ worst-case遗憾的遗憾下降下降,其中$ t $是$ t $。我们表明,匹配的上限$ \ tilde {o}(\ max \ {\ varrho^{1/3} t,\ sqrt {t} \})$,最多可以通过多元素来实现当算法知道最大腐烂速率$ \ varrho $时,一种使用UCB索引的算法,该算法使用UCB索引和一个阈值来决定是否继续拉动手臂或从进一步考虑中移除手臂。我们还表明,$ \ tilde {o}(\ max \ {\ varrho^{1/3} t,t^{3/4} \})$遗憾的上限可以通过不知道的算法来实现$ \ varrho $的值通过使用自适应UCB索引以及自适应阈值值。
translated by 谷歌翻译
我们解决了在线顺序决策的问题,即在利用当前知识以最大程度地提高绩效和探索新信息以使用多武器的强盗框架获得长期利益之间的权衡平衡。汤普森采样是选择解决这一探索探索困境的动作的启发式方法之一。我们首先提出了一个通用框架,该框架可帮助启发性地调整汤普森采样中的探索与剥削权衡取舍,并使用后部分布中的多个样本进行调整。利用此框架,我们为多臂匪徒问题提出了两种算法,并为累积遗憾提供了理论界限。接下来,我们证明了拟议算法对汤普森采样的累积遗憾表现的经验改善。我们还显示了所提出的算法在现实世界数据集上的有效性。与现有方法相反,我们的框架提供了一种机制,可以根据手头的任务改变探索/开发量。为此,我们将框架扩展到两个其他问题,即,在土匪中最佳的ARM识别和时间敏感学习,并将我们的算法与现有方法进行比较。
translated by 谷歌翻译
Thompson sampling is one of oldest heuristic to address the exploration / exploitation trade-off, but it is surprisingly unpopular in the literature. We present here some empirical results using Thompson sampling on simulated and real data, and show that it is highly competitive. And since this heuristic is very easy to implement, we argue that it should be part of the standard baselines to compare against.
translated by 谷歌翻译
在线强化学习(RL)算法通常难以在复杂的人体面对应用中部署,因为它们可能会缓慢学习并且早期性能差。为了解决这个问题,我们介绍了一种结合人类洞察速度学习的实用算法。我们的算法,约束采样增强学习(CSRL)将现有域知识包含为RL策略的约束/限制。它需要多种潜在的政策限制,以保持稳健性,以便在利用有用的时击败个体限制,以便快速学习。鉴于基础RL学习算法(例如UCRL,DQN,Rainbow),我们提出了对消除方案的上下置信度,该方案利用了限制与其观察性能之间的关系,以便自适应地切换它们。我们将我们的算法用DQN型算法和UCRL作为基础算法,并在四种环境中评估我们的算法,包括基于实际数据的三个模拟器:建议,教育活动排序和HIV处理测序。在所有情况下,CSRL比基线更快地学习良好的政策。
translated by 谷歌翻译