后门数据中毒攻击是一种对抗的攻击,其中攻击者将几个水印,误标记的训练示例注入训练集中。水印不会影响典型数据模型的测试时间性能;但是,该模型在水印示例中可靠地错误。为获得对后门数据中毒攻击的更好的基础认识,我们展示了一个正式的理论框架,其中一个人可以讨论对分类问题的回溯数据中毒攻击。然后我们使用它来分析这些攻击的重要统计和计算问题。在统计方面,我们识别一个参数,我们称之为记忆能力,捕捉到后门攻击的学习问题的内在脆弱性。这使我们能够争论几个自然学习问题的鲁棒性与后门攻击。我们的结果,攻击者涉及介绍后门攻击的明确建设,我们的鲁棒性结果表明,一些自然问题设置不能产生成功的后门攻击。从计算的角度来看,我们表明,在某些假设下,对抗训练可以检测训练集中的后门的存在。然后,我们表明,在类似的假设下,我们称之为呼叫滤波和鲁棒概括的两个密切相关的问题几乎等同。这意味着它既是渐近必要的,并且足以设计算法,可以识别训练集中的水印示例,以便获得既广泛概念的学习算法,以便在室外稳健。
translated by 谷歌翻译
可实现和不可知性的可读性的等价性是学习理论的基本现象。与PAC学习和回归等古典设置范围的变种,近期趋势,如对冲强劲和私人学习,我们仍然缺乏统一理论;等同性的传统证据往往是不同的,并且依赖于强大的模型特异性假设,如统一的收敛和样本压缩。在这项工作中,我们给出了第一个独立的框架,解释了可实现和不可知性的可读性的等价性:三行黑箱减少简化,统一,并在各种各样的环境中扩展了我们的理解。这包括没有已知的学报的模型,例如学习任意分布假设或一般损失,以及许多其他流行的设置,例如强大的学习,部分学习,公平学习和统计查询模型。更一般地,我们认为可实现和不可知的学习的等价性实际上是我们调用属性概括的更广泛现象的特殊情况:可以满足有限的学习算法(例如\噪声公差,隐私,稳定性)的任何理想性质假设类(可能在某些变化中)延伸到任何学习的假设类。
translated by 谷歌翻译
删除攻击旨在通过略微扰动正确标记的训练示例的特征来大幅恶化学习模型的测试准确性。通过将这种恶意攻击正式地找到特定$ \ infty $ -wassersein球中的最坏情况培训数据,我们表明最小化扰动数据的对抗性风险相当于优化原始数据上的自然风险的上限。这意味着对抗性培训可以作为防止妄想攻击的原则防御。因此,通过普遍训练可以很大程度地回收测试精度。为了进一步了解国防的内部机制,我们披露了对抗性培训可以通过防止学习者过于依赖于自然环境中的非鲁棒特征来抵制妄想扰动。最后,我们将我们的理论调查结果与一系列关于流行的基准数据集进行了补充,这表明防御能够承受六种不同的实际攻击。在面对令人难以闻名的对手时,理论和经验结果投票给逆势训练。
translated by 谷歌翻译
解决机器学习模型的公平关注是朝着实际采用现实世界自动化系统中的至关重要的一步。尽管已经开发了许多方法来从数据培训公平模型,但对这些方法对数据损坏的鲁棒性知之甚少。在这项工作中,我们考虑在最坏情况下的数据操作下进行公平意识学习。我们表明,在某些情况下,对手可能会迫使任何学习者返回过度偏见的分类器,无论样本量如何,有或没有降解的准确性,并且多余的偏见的强度会增加数据中数据不足的受保护组的学习问题,而数据中有代表性不足的组。我们还证明,我们的硬度结果紧密到不断的因素。为此,我们研究了两种自然学习算法,以优化准确性和公平性,并表明这些算法在损坏比和较大数据限制中受保护的群体频率方面享有订单最佳的保证。
translated by 谷歌翻译
中毒攻击已成为对机器学习算法的重要安全威胁。已经证明对培训集进行小变化的对手,例如添加特制的数据点,可以损害输出模型的性能。一些更强大的中毒攻击需要全面了解培训数据。这种叶子打开了使用没有完全了解干净训练集的中毒攻击来实现相同的攻击结果的可能性。在这项工作中,我们启动了对上述问题的理论研究。具体而言,对于具有套索的特征选择的情况,我们表明全信息对手(基于培训数据的其余部分的工艺中毒示例)可从未获得培训集的最佳攻击者提供了更强的最佳攻击者数据分发。我们的分离结果表明,数据感知和数据疏忽的两个设置从根本上不同,我们不能希望在这些场景中始终达到相同的攻击或辩护。
translated by 谷歌翻译
Machine learning models are often susceptible to adversarial perturbations of their inputs. Even small perturbations can cause state-of-the-art classifiers with high "standard" accuracy to produce an incorrect prediction with high confidence. To better understand this phenomenon, we study adversarially robust learning from the viewpoint of generalization. We show that already in a simple natural data model, the sample complexity of robust learning can be significantly larger than that of "standard" learning. This gap is information theoretic and holds irrespective of the training algorithm or the model family. We complement our theoretical results with experiments on popular image classification datasets and show that a similar gap exists here as well. We postulate that the difficulty of training robust classifiers stems, at least partially, from this inherently larger sample complexity.
translated by 谷歌翻译
在监督的学习中,已经表明,在许多情况下,数据中的标签噪声可以插值而不会受到测试准确性的处罚。我们表明,插值标签噪声会引起对抗性脆弱性,并证明了第一个定理显示标签噪声和对抗性风险在数据分布方面的依赖性。我们的结果几乎是尖锐的,而没有考虑学习算法的电感偏差。我们还表明,感应偏置使标签噪声的效果更强。
translated by 谷歌翻译
A recent line of work has uncovered a new form of data poisoning: so-called backdoor attacks. These attacks are particularly dangerous because they do not affect a network's behavior on typical, benign data. Rather, the network only deviates from its expected output when triggered by a perturbation planted by an adversary. In this paper, we identify a new property of all known backdoor attacks, which we call spectral signatures. This property allows us to utilize tools from robust statistics to thwart the attacks. We demonstrate the efficacy of these signatures in detecting and removing poisoned examples on real image sets and state of the art neural network architectures. We believe that understanding spectral signatures is a crucial first step towards designing ML systems secure against such backdoor attacks.
translated by 谷歌翻译
Recently, Robey et al. propose a notion of probabilistic robustness, which, at a high-level, requires a classifier to be robust to most but not all perturbations. They show that for certain hypothesis classes where proper learning under worst-case robustness is \textit{not} possible, proper learning under probabilistic robustness \textit{is} possible with sample complexity exponentially smaller than in the worst-case robustness setting. This motivates the question of whether proper learning under probabilistic robustness is always possible. In this paper, we show that this is \textit{not} the case. We exhibit examples of hypothesis classes $\mathcal{H}$ with finite VC dimension that are \textit{not} probabilistically robustly PAC learnable with \textit{any} proper learning rule. However, if we compare the output of the learner to the best hypothesis for a slightly \textit{stronger} level of probabilistic robustness, we show that not only is proper learning \textit{always} possible, but it is possible via empirical risk minimization.
translated by 谷歌翻译
我们考虑在对抗环境中的强大学习模型。学习者获得未腐败的培训数据,并访问可能受到测试期间对手影响的可能腐败。学习者的目标是建立一个强大的分类器,该分类器将在未来的对抗示例中进行测试。每个输入的对手仅限于$ k $可能的损坏。我们将学习者 - 对手互动建模为零和游戏。该模型与Schmidt等人的对抗示例模型密切相关。 (2018); Madry等。 (2017)。我们的主要结果包括对二进制和多类分类的概括界限,以及实现的情况(回归)。对于二元分类设置,我们都拧紧Feige等人的概括。 (2015年),也能够处理无限假设类别。样本复杂度从$ o(\ frac {1} {\ epsilon^4} \ log(\ frac {| h |} {\ delta})$ to $ o \ big(\ frac {1} { epsilon^2}(kvc(h)\ log^{\ frac {3} {2}+\ alpha}(kvc(h))+\ log(\ frac {1} {\ delta} {\ delta})\ big)\ big)\ big)$ for任何$ \ alpha> 0 $。此外,我们将算法和概括从二进制限制到多类和真实价值的案例。一路上,我们获得了脂肪震惊的尺寸和$ k $ fold的脂肪的尺寸和Rademacher复杂性的结果最大值的功能类别;这些可能具有独立的兴趣。对于二进制分类,Feige等人(2015年)使用遗憾的最小化算法和Erm Oracle作为黑匣子;我们适应了多类和回归设置。该算法为我们提供了给定培训样本中的球员的近乎最佳政策。
translated by 谷歌翻译
最近的研究表明,深神经网络(DNN)易受对抗性攻击的影响,包括逃避和后门(中毒)攻击。在防守方面,有密集的努力,改善了对逃避袭击的经验和可怜的稳健性;然而,对后门攻击的可稳健性仍然很大程度上是未开发的。在本文中,我们专注于认证机器学习模型稳健性,反对一般威胁模型,尤其是后门攻击。我们首先通过随机平滑技术提供统一的框架,并展示如何实例化以证明对逃避和后门攻击的鲁棒性。然后,我们提出了第一个强大的培训过程Rab,以平滑训练有素的模型,并证明其稳健性对抗后门攻击。我们派生机学习模型的稳健性突出了培训的机器学习模型,并证明我们的鲁棒性受到紧张。此外,我们表明,可以有效地训练强大的平滑模型,以适用于诸如k最近邻分类器的简单模型,并提出了一种精确的平滑训练算法,该算法消除了从这种模型的噪声分布采样采样的需要。经验上,我们对MNIST,CIFAR-10和Imagenet数据集等DNN,差异私有DNN和K-NN模型等不同机器学习(ML)型号进行了全面的实验,并为反卧系攻击提供认证稳健性的第一个基准。此外,我们在SPAMBase表格数据集上评估K-NN模型,以展示所提出的精确算法的优点。对多元化模型和数据集的综合评价既有关于普通训练时间攻击的进一步强劲学习策略的多样化模型和数据集的综合评价。
translated by 谷歌翻译
从外界培训的机器学习模型可能会被数据中毒攻击损坏,将恶意指向到模型的培训集中。对这些攻击的常见防御是数据消毒:在培训模型之前首先过滤出异常培训点。在本文中,我们开发了三次攻击,可以绕过广泛的常见数据消毒防御,包括基于最近邻居,训练损失和奇异值分解的异常探测器。通过增加3%的中毒数据,我们的攻击成功地将Enron垃圾邮件检测数据集的测试错误从3%增加到24%,并且IMDB情绪分类数据集从12%到29%。相比之下,没有明确占据这些数据消毒防御的现有攻击被他们击败。我们的攻击基于两个想法:(i)我们协调我们的攻击将中毒点彼此放置在彼此附近,(ii)我们将每个攻击制定为受限制的优化问题,限制旨在确保中毒点逃避检测。随着这种优化涉及解决昂贵的Bilevel问题,我们的三个攻击对应于基于影响功能的近似近似这个问题的方式; minimax二元性;和karush-kuhn-tucker(kkt)条件。我们的结果强调了对数据中毒攻击产生更强大的防御的必要性。
translated by 谷歌翻译
Adversarial examples have attracted significant attention in machine learning, but the reasons for their existence and pervasiveness remain unclear. We demonstrate that adversarial examples can be directly attributed to the presence of non-robust features: features (derived from patterns in the data distribution) that are highly predictive, yet brittle and (thus) incomprehensible to humans. After capturing these features within a theoretical framework, we establish their widespread existence in standard datasets. Finally, we present a simple setting where we can rigorously tie the phenomena we observe in practice to a misalignment between the (human-specified) notion of robustness and the inherent geometry of the data.
translated by 谷歌翻译
尽管使用对抗性训练捍卫深度学习模型免受对抗性扰动的经验成功,但到目前为止,仍然不清楚对抗性扰动的存在背后的原则是什么,而对抗性培训对神经网络进行了什么来消除它们。在本文中,我们提出了一个称为特征纯化的原则,在其中,我们表明存在对抗性示例的原因之一是在神经网络的训练过程中,在隐藏的重量中积累了某些小型密集混合物;更重要的是,对抗训练的目标之一是去除此类混合物以净化隐藏的重量。我们介绍了CIFAR-10数据集上的两个实验,以说明这一原理,并且一个理论上的结果证明,对于某些自然分类任务,使用随机初始初始化的梯度下降训练具有RELU激活的两层神经网络确实满足了这一原理。从技术上讲,我们给出了我们最大程度的了解,第一个结果证明,以下两个可以同时保持使用RELU激活的神经网络。 (1)对原始数据的训练确实对某些半径的小对抗扰动确实不舒适。 (2)即使使用经验性扰动算法(例如FGM),实际上也可以证明对对抗相同半径的任何扰动也可以证明具有强大的良好性。最后,我们还证明了复杂性的下限,表明该网络的低复杂性模型,例如线性分类器,低度多项式或什至是神经切线核,无论使用哪种算法,都无法防御相同半径的扰动训练他们。
translated by 谷歌翻译
机器学习的许多成功都是基于最大程度地减少平均损失函数的基础。但是,众所周知,这种范式遭受了鲁棒性问题的影响,阻碍了其在安全 - 关键领域中的适用性。这些问题通常是通过针对最坏情况的数据扰动来解决的,该技术被称为对抗性训练。尽管经验上有效,但对抗性训练可能过于保守,从而导致名义性能和稳健性之间的不利权衡。为此,在本文中,我们提出了一个称为概率鲁棒性的框架,该框架弥合了准确但脆弱的平均情况和坚固而保守的最坏情况之间的差距,这是通过对最多而不是对所有扰动的实施强大的。从理论的角度来看,该框架克服了最差案例学习和平均案例学习的性能与样本复杂性之间的权衡。从实际的角度来看,我们提出了一种基于风险感知优化的新算法,该算法有效地平衡了平均和最差的案例性能,而相对于对抗性训练,计算成本较低。我们对MNIST,CIFAR-10和SVHN的结果说明了该框架在从平均值到最差的鲁棒性方面的优势。
translated by 谷歌翻译
在这项工作中,我们研究了在回归设置中训练浅神经网络时捍卫抗数据量攻击的可能性。我们专注于为一类Depth-2有限宽度神经网络进行监督学习,其中包括单滤波器卷积网络。在这类网络中,我们尝试在训练过程中真实输出的随机,有限和加性对抗性扭曲的情况下,在存在恶意的甲骨文的情况下学习网络权重。对于我们构建的非梯度随机算法,我们证明了对抗性攻击的大小,重量近似准确性以及所提出算法所达到的置信度最差的近距离权衡。当我们的算法使用迷你批次时,我们分析了微型批量大小如何影响收敛。我们还展示了如何利用外层权重的缩放缩放来根据攻击的概率来对抗输出毒作攻击。最后,我们提供实验证据,证明我们的算法在不同的输入数据分布(包括重型分布的实例)下如何优于随机梯度下降。
translated by 谷歌翻译
我们在禁用的对手存在下研究公平分类,允许获得$ \ eta $,选择培训样本的任意$ \ eta $ -flaction,并任意扰乱受保护的属性。由于战略误报,恶意演员或归责的错误,受保护属性可能不正确的设定。和现有的方法,使随机或独立假设对错误可能不满足其在这种对抗环境中的保证。我们的主要贡献是在这种对抗的环境中学习公平分类器的优化框架,这些普遍存在的准确性和公平性提供了可证明的保证。我们的框架适用于多个和非二进制保护属性,专为大类线性分数公平度量设计,并且还可以处理除了受保护的属性之外的扰动。我们证明了我们框架的近密性,对自然假设类别的保证:没有算法可以具有明显更好的准确性,并且任何具有更好公平性的算法必须具有较低的准确性。凭经验,我们评估了我们对统计率的统计税务统计税率为一个对手的统计税率产生的分类机。
translated by 谷歌翻译
对抗性鲁棒性是各种现代机器学习应用中的关键财产。虽然它是最近几个理论研究的主题,但与对抗性稳健性有关的许多重要问题仍然是开放的。在这项工作中,我们研究了有关对抗对抗鲁棒性的贝叶斯最优性的根本问题。我们提供了一般的充分条件,可以保证贝叶斯最佳分类器的存在,以满足对抗性鲁棒性。我们的结果可以提供一种有用的工具,用于随后研究对抗性鲁棒性及其一致性的替代损失。这份稿件是“关于普通贝叶斯分类器的存在”在神经潮端中发表的延伸版本。原始纸张的结果不适用于一些非严格凸的规范。在这里,我们将结果扩展到所有可能的规范。
translated by 谷歌翻译
众所周知,现代神经网络容易受到对抗例子的影响。为了减轻这个问题,已经提出了一系列强大的学习算法。但是,尽管通过某些方法可以通过某些方法接近稳定的训练误差,但所有现有的算法都会导致较高的鲁棒概括误差。在本文中,我们从深层神经网络的表达能力的角度提供了对这种令人困惑的现象的理论理解。具体而言,对于二进制分类数据,我们表明,对于Relu网络,虽然轻度的过度参数足以满足较高的鲁棒训练精度,但存在持续的稳健概括差距,除非神经网络的大小是指数的,却是指数的。数据维度$ d $。即使数据是线性可分离的,这意味着要实现低清洁概括错误很容易,我们仍然可以证明$ \ exp({\ omega}(d))$下限可用于鲁棒概括。通常,只要它们的VC维度最多是参数数量,我们的指数下限也适用于各种神经网络家族和其他功能类别。此外,我们为网络大小建立了$ \ exp({\ mathcal {o}}(k))$的改进的上限,当数据放在具有内在尺寸$ k $的歧管上时,以实现低鲁棒的概括错误($) k \ ll d $)。尽管如此,我们也有一个下限,相对于$ k $成倍增长 - 维度的诅咒是不可避免的。通过证明网络大小之间的指数分离以实现较低的鲁棒训练和泛化错误,我们的结果表明,鲁棒概括的硬度可能源于实用模型的表现力。
translated by 谷歌翻译
在这项工作中,我们展示了普遍的多方中毒攻击,适应并适用于各方之间的任意交互模式的多方学习过程。更一般地说,我们介绍和研究$(k,p)$ - 中毒攻击,其中对手控制在[m] $中,以及每个损坏的派对$ p_i $,对手提交一些中毒数据$ \ mathcal {t}'_ i $代表$ p_i $,它仍然是``$(1-p)$ - 关闭''到正确的数据$ \ mathcal {t} _i $(例如,$ 1-p $ fillaction $ \ mathcal {t}'_ i $仍然诚实地生成)。我们证明,对于任何``bad'属性$ b $ b $ h $ h $(例如,特定测试示例上的$ h $失败或拥有具有任意小的持续概率的``lable''风险)没有攻击的情况,总是有一个$(k,p)$ - 中毒攻击,增加了$ \ mu $的$ \ mu $ to \ mu ^ {1-p \ cdot k / m}} = \ mu +ω(p \ cdot k / m)$。我们的攻击只使用干净的标签,它在线。更一般地说,我们证明,对于任何界限函数$ f(x_1,\ dots,x_n)\在$ n $ -step随机过程$ \ mathbf {x} =(x_1,\ dots ,x_n)$,可以覆盖每一个$ n $块的对手,甚至依赖概率$ p $可以通过至少$ \ω(p \ cdot \ mathrm {var} [f(\ mathbf { x})])$。
translated by 谷歌翻译