众所周知,现代神经网络容易受到对抗例子的影响。为了减轻这个问题,已经提出了一系列强大的学习算法。但是,尽管通过某些方法可以通过某些方法接近稳定的训练误差,但所有现有的算法都会导致较高的鲁棒概括误差。在本文中,我们从深层神经网络的表达能力的角度提供了对这种令人困惑的现象的理论理解。具体而言,对于二进制分类数据,我们表明,对于Relu网络,虽然轻度的过度参数足以满足较高的鲁棒训练精度,但存在持续的稳健概括差距,除非神经网络的大小是指数的,却是指数的。数据维度$ d $。即使数据是线性可分离的,这意味着要实现低清洁概括错误很容易,我们仍然可以证明$ \ exp({\ omega}(d))$下限可用于鲁棒概括。通常,只要它们的VC维度最多是参数数量,我们的指数下限也适用于各种神经网络家族和其他功能类别。此外,我们为网络大小建立了$ \ exp({\ mathcal {o}}(k))$的改进的上限,当数据放在具有内在尺寸$ k $的歧管上时,以实现低鲁棒的概括错误($) k \ ll d $)。尽管如此,我们也有一个下限,相对于$ k $成倍增长 - 维度的诅咒是不可避免的。通过证明网络大小之间的指数分离以实现较低的鲁棒训练和泛化错误,我们的结果表明,鲁棒概括的硬度可能源于实用模型的表现力。
translated by 谷歌翻译
过度参数化的神经网络在复杂数据上具有很大的代表能力,更重要的是产生足够平滑的输出,这对于它们的概括和稳健性至关重要。大多数现有函数近似理论表明,使用足够多的参数,神经网络可以很好地近似于功能值的某些类别的函数。然而,神经网络本身可能是高度平滑的。为了弥合这一差距,我们以卷积残留网络(Rescresnets)为例,并证明大型响应不仅可以在功能值方面近似目标函数,而且还可以表现出足够的一阶平滑度。此外,我们将理论扩展到在低维歧管上支持的近似功能。我们的理论部分证明了在实践中使用深层网络的好处。提供了关于对抗性鲁棒图像分类的数值实验,以支持我们的理论。
translated by 谷歌翻译
我们研究神经网络表达能力的基本限制。给定两组$ f $,$ g $的实值函数,我们首先证明了$ f $中的功能的一般下限,可以在$ l^p(\ mu)$ norm中通过$ g中的功能近似$,对于任何$ p \ geq 1 $和任何概率度量$ \ mu $。下限取决于$ f $的包装数,$ f $的范围以及$ g $的脂肪震动尺寸。然后,我们实例化了$ g $对应于分段的馈电神经网络的情况,并详细描述了两组$ f $:h {\“ o} lder balls和多变量单调函数。除了匹配(已知或新的)上限与日志因素外,我们的下限还阐明了$ l^p $ Norm或SUP Norm中近似之间的相似性或差异,解决了Devore等人的开放问题(2021年))。我们的证明策略与SUP Norm案例不同,并使用了Mendelson(2002)的关键概率结果。
translated by 谷歌翻译
本文通过引入几何深度学习(GDL)框架来构建通用馈电型型模型与可区分的流形几何形状兼容的通用馈电型模型,从而解决了对非欧国人数据进行处理的需求。我们表明,我们的GDL模型可以在受控最大直径的紧凑型组上均匀地近似任何连续目标函数。我们在近似GDL模型的深度上获得了最大直径和上限的曲率依赖性下限。相反,我们发现任何两个非分类紧凑型歧管之间始终都有连续的函数,任何“局部定义”的GDL模型都不能均匀地近似。我们的最后一个主要结果确定了数据依赖性条件,确保实施我们近似的GDL模型破坏了“维度的诅咒”。我们发现,任何“现实世界”(即有限)数据集始终满足我们的状况,相反,如果目标函数平滑,则任何数据集都满足我们的要求。作为应用,我们确认了以下GDL模型的通用近似功能:Ganea等。 (2018)的双波利馈电网络,实施Krishnan等人的体系结构。 (2015年)的深卡尔曼 - 滤波器和深度玛克斯分类器。我们构建了:Meyer等人的SPD-Matrix回归剂的通用扩展/变体。 (2011)和Fletcher(2003)的Procrustean回归剂。在欧几里得的环境中,我们的结果暗示了Kidger和Lyons(2020)的近似定理和Yarotsky和Zhevnerchuk(2019)无估计近似率的数据依赖性版本的定量版本。
translated by 谷歌翻译
This paper investigates the stability of deep ReLU neural networks for nonparametric regression under the assumption that the noise has only a finite p-th moment. We unveil how the optimal rate of convergence depends on p, the degree of smoothness and the intrinsic dimension in a class of nonparametric regression functions with hierarchical composition structure when both the adaptive Huber loss and deep ReLU neural networks are used. This optimal rate of convergence cannot be obtained by the ordinary least squares but can be achieved by the Huber loss with a properly chosen parameter that adapts to the sample size, smoothness, and moment parameters. A concentration inequality for the adaptive Huber ReLU neural network estimators with allowable optimization errors is also derived. To establish a matching lower bound within the class of neural network estimators using the Huber loss, we employ a different strategy from the traditional route: constructing a deep ReLU network estimator that has a better empirical loss than the true function and the difference between these two functions furnishes a low bound. This step is related to the Huberization bias, yet more critically to the approximability of deep ReLU networks. As a result, we also contribute some new results on the approximation theory of deep ReLU neural networks.
translated by 谷歌翻译
Neural networks with random weights appear in a variety of machine learning applications, most prominently as the initialization of many deep learning algorithms and as a computationally cheap alternative to fully learned neural networks. In the present article, we enhance the theoretical understanding of random neural networks by addressing the following data separation problem: under what conditions can a random neural network make two classes $\mathcal{X}^-, \mathcal{X}^+ \subset \mathbb{R}^d$ (with positive distance) linearly separable? We show that a sufficiently large two-layer ReLU-network with standard Gaussian weights and uniformly distributed biases can solve this problem with high probability. Crucially, the number of required neurons is explicitly linked to geometric properties of the underlying sets $\mathcal{X}^-, \mathcal{X}^+$ and their mutual arrangement. This instance-specific viewpoint allows us to overcome the usual curse of dimensionality (exponential width of the layers) in non-pathological situations where the data carries low-complexity structure. We quantify the relevant structure of the data in terms of a novel notion of mutual complexity (based on a localized version of Gaussian mean width), which leads to sound and informative separation guarantees. We connect our result with related lines of work on approximation, memorization, and generalization.
translated by 谷歌翻译
我们研究了深层神经网络的表达能力,以在扩张的转移不变空间中近似功能,这些空间被广泛用于信号处理,图像处理,通信等。相对于神经网络的宽度和深度估算了近似误差界限。网络构建基于深神经网络的位提取和数据拟合能力。作为我们主要结果的应用,获得了经典函数空间(例如Sobolev空间和BESOV空间)的近似速率。我们还给出了$ l^p(1 \ le p \ le \ infty)$近似误差的下限,这表明我们的神经网络的构建是渐近的最佳选择,即最大程度地达到对数因素。
translated by 谷歌翻译
我们考虑使用对抗鲁棒性学习的样本复杂性。对于此问题的大多数现有理论结果已经考虑了数据中不同类别在一起或重叠的设置。通过一些实际应用程序,我们认为,相比之下,存在具有完美精度和稳健性的分类器的分类器的良好分离的情况,并表明样品复杂性叙述了一个完全不同的故事。具体地,对于线性分类器,我们显示了大类分离的分布式,其中任何算法的预期鲁棒丢失至少是$ \ω(\ FRAC {D} {n})$,而最大边距算法已预期标准亏损$ o(\ frac {1} {n})$。这表明了通过现有技术不能获得的标准和鲁棒损耗中的间隙。另外,我们介绍了一种算法,给定鲁棒率半径远小于类之间的间隙的实例,给出了预期鲁棒损失的解决方案是$ O(\ FRAC {1} {n})$。这表明,对于非常好的数据,可实现$ O(\ FRAC {1} {n})$的收敛速度,否则就是这样。我们的结果适用于任何$ \ ell_p $ norm以$ p> 1 $(包括$ p = \ idty $)为稳健。
translated by 谷歌翻译
生成的对抗网络(GAN)在无监督学习方面取得了巨大的成功。尽管具有显着的经验表现,但关于gan的统计特性的理论研究有限。本文提供了gan的近似值和统计保证,以估算具有H \“ {o} lder空间密度的数据分布。我们的主要结果表明,如果正确选择了生成器和鉴别器网络架构,则gan是一致的估计器在较强的差异指标下的数据分布(例如Wasserstein-1距离。 ,这不受环境维度的诅咒。我们对低维数据的分析基于具有Lipschitz连续性保证的神经网络的通用近似理论,这可能具有独立的兴趣。
translated by 谷歌翻译
在监督的学习中,已经表明,在许多情况下,数据中的标签噪声可以插值而不会受到测试准确性的处罚。我们表明,插值标签噪声会引起对抗性脆弱性,并证明了第一个定理显示标签噪声和对抗性风险在数据分布方面的依赖性。我们的结果几乎是尖锐的,而没有考虑学习算法的电感偏差。我们还表明,感应偏置使标签噪声的效果更强。
translated by 谷歌翻译
众所周知,$ O(n)$参数足以让神经网络记住任意$ N $ INPUT-LABE标签对。通过利用深度,我们显示$ O(n ^ {2/3})$参数足以在输入点的分离的温和条件下记住$ n $对。特别是,更深的网络(即使是宽度为3美元),也会显示比浅网络更有成对,这也同意最近的作品对函数近似的深度的好处。我们还提供支持我们理论发现的经验结果。
translated by 谷歌翻译
无限尺寸空间之间的学习运营商是机器学习,成像科学,数学建模和仿真等广泛应用中出现的重要学习任务。本文研究了利用深神经网络的Lipschitz运营商的非参数估计。 Non-asymptotic upper bounds are derived for the generalization error of the empirical risk minimizer over a properly chosen network class.在假设目标操作员表现出低维结构的情况下,由于训练样本大小增加,我们的误差界限衰减,根据我们估计中的内在尺寸,具有吸引力的快速速度。我们的假设涵盖了实际应用中的大多数情况,我们的结果通过利用操作员估算中的低维结构来产生快速速率。我们还研究了网络结构(例如,网络宽度,深度和稀疏性)对神经网络估计器的泛化误差的影响,并提出了对网络结构的选择来定量地最大化学习效率的一般建议。
translated by 谷歌翻译
We study expressive power of shallow and deep neural networks with piece-wise linear activation functions. We establish new rigorous upper and lower bounds for the network complexity in the setting of approximations in Sobolev spaces. In particular, we prove that deep ReLU networks more efficiently approximate smooth functions than shallow networks. In the case of approximations of 1D Lipschitz functions we describe adaptive depth-6 network architectures more efficient than the standard shallow architecture.
translated by 谷歌翻译
Existing generalization bounds fail to explain crucial factors that drive generalization of modern neural networks. Since such bounds often hold uniformly over all parameters, they suffer from over-parametrization, and fail to account for the strong inductive bias of initialization and stochastic gradient descent. As an alternative, we propose a novel optimal transport interpretation of the generalization problem. This allows us to derive instance-dependent generalization bounds that depend on the local Lipschitz regularity of the earned prediction function in the data space. Therefore, our bounds are agnostic to the parametrization of the model and work well when the number of training samples is much smaller than the number of parameters. With small modifications, our approach yields accelerated rates for data on low-dimensional manifolds, and guarantees under distribution shifts. We empirically analyze our generalization bounds for neural networks, showing that the bound values are meaningful and capture the effect of popular regularization methods during training.
translated by 谷歌翻译
Boosting是一种著名的机器学习方法,它基于将弱和适度不准确假设与强烈而准确的假设相结合的想法。我们研究了弱假设属于界限能力类别的假设。这个假设的灵感来自共同的惯例,即虚弱的假设是“易于学习的类别”中的“人数规则”。 (Schapire和Freund〜 '12,Shalev-Shwartz和Ben-David '14。)正式,我们假设弱假设类别具有有界的VC维度。我们关注两个主要问题:(i)甲骨文的复杂性:产生准确的假设需要多少个弱假设?我们设计了一种新颖的增强算法,并证明它绕过了由Freund和Schapire('95,'12)的经典下限。虽然下限显示$ \ omega({1}/{\ gamma^2})$弱假设有时是必要的,而有时则需要使用$ \ gamma $ -margin,但我们的新方法仅需要$ \ tilde {o}({1})({1}) /{\ gamma})$弱假设,前提是它们属于一类有界的VC维度。与以前的增强算法以多数票汇总了弱假设的算法不同,新的增强算法使用了更复杂(“更深”)的聚合规则。我们通过表明复杂的聚合规则实际上是规避上述下限是必要的,从而补充了这一结果。 (ii)表现力:通过提高有限的VC类的弱假设可以学习哪些任务?可以学到“遥远”的复杂概念吗?为了回答第一个问题,我们{介绍组合几何参数,这些参数捕获增强的表现力。}作为推论,我们为认真的班级的第二个问题提供了肯定的答案,包括半空间和决策树桩。一路上,我们建立并利用差异理论的联系。
translated by 谷歌翻译
Many applications, such as system identification, classification of time series, direct and inverse problems in partial differential equations, and uncertainty quantification lead to the question of approximation of a non-linear operator between metric spaces $\mathfrak{X}$ and $\mathfrak{Y}$. We study the problem of determining the degree of approximation of such operators on a compact subset $K_\mathfrak{X}\subset \mathfrak{X}$ using a finite amount of information. If $\mathcal{F}: K_\mathfrak{X}\to K_\mathfrak{Y}$, a well established strategy to approximate $\mathcal{F}(F)$ for some $F\in K_\mathfrak{X}$ is to encode $F$ (respectively, $\mathcal{F}(F)$) in terms of a finite number $d$ (repectively $m$) of real numbers. Together with appropriate reconstruction algorithms (decoders), the problem reduces to the approximation of $m$ functions on a compact subset of a high dimensional Euclidean space $\mathbb{R}^d$, equivalently, the unit sphere $\mathbb{S}^d$ embedded in $\mathbb{R}^{d+1}$. The problem is challenging because $d$, $m$, as well as the complexity of the approximation on $\mathbb{S}^d$ are all large, and it is necessary to estimate the accuracy keeping track of the inter-dependence of all the approximations involved. In this paper, we establish constructive methods to do this efficiently; i.e., with the constants involved in the estimates on the approximation on $\mathbb{S}^d$ being $\mathcal{O}(d^{1/6})$. We study different smoothness classes for the operators, and also propose a method for approximation of $\mathcal{F}(F)$ using only information in a small neighborhood of $F$, resulting in an effective reduction in the number of parameters involved.
translated by 谷歌翻译
尽管使用对抗性训练捍卫深度学习模型免受对抗性扰动的经验成功,但到目前为止,仍然不清楚对抗性扰动的存在背后的原则是什么,而对抗性培训对神经网络进行了什么来消除它们。在本文中,我们提出了一个称为特征纯化的原则,在其中,我们表明存在对抗性示例的原因之一是在神经网络的训练过程中,在隐藏的重量中积累了某些小型密集混合物;更重要的是,对抗训练的目标之一是去除此类混合物以净化隐藏的重量。我们介绍了CIFAR-10数据集上的两个实验,以说明这一原理,并且一个理论上的结果证明,对于某些自然分类任务,使用随机初始初始化的梯度下降训练具有RELU激活的两层神经网络确实满足了这一原理。从技术上讲,我们给出了我们最大程度的了解,第一个结果证明,以下两个可以同时保持使用RELU激活的神经网络。 (1)对原始数据的训练确实对某些半径的小对抗扰动确实不舒适。 (2)即使使用经验性扰动算法(例如FGM),实际上也可以证明对对抗相同半径的任何扰动也可以证明具有强大的良好性。最后,我们还证明了复杂性的下限,表明该网络的低复杂性模型,例如线性分类器,低度多项式或什至是神经切线核,无论使用哪种算法,都无法防御相同半径的扰动训练他们。
translated by 谷歌翻译
我们为特殊神经网络架构,称为运营商复发性神经网络的理论分析,用于近似非线性函数,其输入是线性运算符。这些功能通常在解决方案算法中出现用于逆边值问题的问题。传统的神经网络将输入数据视为向量,因此它们没有有效地捕获与对应于这种逆问题中的数据的线性运算符相关联的乘法结构。因此,我们介绍一个类似标准的神经网络架构的新系列,但是输入数据在向量上乘法作用。由较小的算子出现在边界控制中的紧凑型操作员和波动方程的反边值问题分析,我们在网络中的选择权重矩阵中促进结构和稀疏性。在描述此架构后,我们研究其表示属性以及其近似属性。我们还表明,可以引入明确的正则化,其可以从所述逆问题的数学分析导出,并导致概括属性上的某些保证。我们观察到重量矩阵的稀疏性改善了概括估计。最后,我们讨论如何将运营商复发网络视为深度学习模拟,以确定诸如用于从边界测量的声波方程中重建所未知的WAVESTED的边界控制的算法算法。
translated by 谷歌翻译
Classically, data interpolation with a parametrized model class is possible as long as the number of parameters is larger than the number of equations to be satisfied. A puzzling phenomenon in deep learning is that models are trained with many more parameters than what this classical theory would suggest. We propose a partial theoretical explanation for this phenomenon. We prove that for a broad class of data distributions and model classes, overparametrization is necessary if one wants to interpolate the data smoothly. Namely we show that smooth interpolation requires $d$ times more parameters than mere interpolation, where $d$ is the ambient data dimension. We prove this universal law of robustness for any smoothly parametrized function class with polynomial size weights, and any covariate distribution verifying isoperimetry. In the case of two-layers neural networks and Gaussian covariates, this law was conjectured in prior work by Bubeck, Li and Nagaraj. We also give an interpretation of our result as an improved generalization bound for model classes consisting of smooth functions.
translated by 谷歌翻译
Consider the multivariate nonparametric regression model. It is shown that estimators based on sparsely connected deep neural networks with ReLU activation function and properly chosen network architecture achieve the minimax rates of convergence (up to log nfactors) under a general composition assumption on the regression function. The framework includes many well-studied structural constraints such as (generalized) additive models. While there is a lot of flexibility in the network architecture, the tuning parameter is the sparsity of the network. Specifically, we consider large networks with number of potential network parameters exceeding the sample size. The analysis gives some insights into why multilayer feedforward neural networks perform well in practice. Interestingly, for ReLU activation function the depth (number of layers) of the neural network architectures plays an important role and our theory suggests that for nonparametric regression, scaling the network depth with the sample size is natural. It is also shown that under the composition assumption wavelet estimators can only achieve suboptimal rates.
translated by 谷歌翻译