Many applications, such as system identification, classification of time series, direct and inverse problems in partial differential equations, and uncertainty quantification lead to the question of approximation of a non-linear operator between metric spaces $\mathfrak{X}$ and $\mathfrak{Y}$. We study the problem of determining the degree of approximation of such operators on a compact subset $K_\mathfrak{X}\subset \mathfrak{X}$ using a finite amount of information. If $\mathcal{F}: K_\mathfrak{X}\to K_\mathfrak{Y}$, a well established strategy to approximate $\mathcal{F}(F)$ for some $F\in K_\mathfrak{X}$ is to encode $F$ (respectively, $\mathcal{F}(F)$) in terms of a finite number $d$ (repectively $m$) of real numbers. Together with appropriate reconstruction algorithms (decoders), the problem reduces to the approximation of $m$ functions on a compact subset of a high dimensional Euclidean space $\mathbb{R}^d$, equivalently, the unit sphere $\mathbb{S}^d$ embedded in $\mathbb{R}^{d+1}$. The problem is challenging because $d$, $m$, as well as the complexity of the approximation on $\mathbb{S}^d$ are all large, and it is necessary to estimate the accuracy keeping track of the inter-dependence of all the approximations involved. In this paper, we establish constructive methods to do this efficiently; i.e., with the constants involved in the estimates on the approximation on $\mathbb{S}^d$ being $\mathcal{O}(d^{1/6})$. We study different smoothness classes for the operators, and also propose a method for approximation of $\mathcal{F}(F)$ using only information in a small neighborhood of $F$, resulting in an effective reduction in the number of parameters involved.
translated by 谷歌翻译
本文通过引入几何深度学习(GDL)框架来构建通用馈电型型模型与可区分的流形几何形状兼容的通用馈电型模型,从而解决了对非欧国人数据进行处理的需求。我们表明,我们的GDL模型可以在受控最大直径的紧凑型组上均匀地近似任何连续目标函数。我们在近似GDL模型的深度上获得了最大直径和上限的曲率依赖性下限。相反,我们发现任何两个非分类紧凑型歧管之间始终都有连续的函数,任何“局部定义”的GDL模型都不能均匀地近似。我们的最后一个主要结果确定了数据依赖性条件,确保实施我们近似的GDL模型破坏了“维度的诅咒”。我们发现,任何“现实世界”(即有限)数据集始终满足我们的状况,相反,如果目标函数平滑,则任何数据集都满足我们的要求。作为应用,我们确认了以下GDL模型的通用近似功能:Ganea等。 (2018)的双波利馈电网络,实施Krishnan等人的体系结构。 (2015年)的深卡尔曼 - 滤波器和深度玛克斯分类器。我们构建了:Meyer等人的SPD-Matrix回归剂的通用扩展/变体。 (2011)和Fletcher(2003)的Procrustean回归剂。在欧几里得的环境中,我们的结果暗示了Kidger和Lyons(2020)的近似定理和Yarotsky和Zhevnerchuk(2019)无估计近似率的数据依赖性版本的定量版本。
translated by 谷歌翻译
在本文中,我们研究了与具有多种激活函数的浅神经网络相对应的变异空间的近似特性。我们介绍了两个主要工具,用于估计这些空间的度量熵,近似率和$ n $宽度。首先,我们介绍了平滑参数化词典的概念,并在非线性近似速率,度量熵和$ n $ widths上给出了上限。上限取决于参数化的平滑度。该结果适用于与浅神经网络相对应的脊功能的字典,并且在许多情况下它们的现有结果改善了。接下来,我们提供了一种方法,用于下限度量熵和$ n $ widths的变化空间,其中包含某些类别的山脊功能。该结果给出了$ l^2 $ approximation速率,度量熵和$ n $ widths的变化空间的急剧下限具有界变化的乙状结激活函数。
translated by 谷歌翻译
无限尺寸空间之间的学习运营商是机器学习,成像科学,数学建模和仿真等广泛应用中出现的重要学习任务。本文研究了利用深神经网络的Lipschitz运营商的非参数估计。 Non-asymptotic upper bounds are derived for the generalization error of the empirical risk minimizer over a properly chosen network class.在假设目标操作员表现出低维结构的情况下,由于训练样本大小增加,我们的误差界限衰减,根据我们估计中的内在尺寸,具有吸引力的快速速度。我们的假设涵盖了实际应用中的大多数情况,我们的结果通过利用操作员估算中的低维结构来产生快速速率。我们还研究了网络结构(例如,网络宽度,深度和稀疏性)对神经网络估计器的泛化误差的影响,并提出了对网络结构的选择来定量地最大化学习效率的一般建议。
translated by 谷歌翻译
我们为特殊神经网络架构,称为运营商复发性神经网络的理论分析,用于近似非线性函数,其输入是线性运算符。这些功能通常在解决方案算法中出现用于逆边值问题的问题。传统的神经网络将输入数据视为向量,因此它们没有有效地捕获与对应于这种逆问题中的数据的线性运算符相关联的乘法结构。因此,我们介绍一个类似标准的神经网络架构的新系列,但是输入数据在向量上乘法作用。由较小的算子出现在边界控制中的紧凑型操作员和波动方程的反边值问题分析,我们在网络中的选择权重矩阵中促进结构和稀疏性。在描述此架构后,我们研究其表示属性以及其近似属性。我们还表明,可以引入明确的正则化,其可以从所述逆问题的数学分析导出,并导致概括属性上的某些保证。我们观察到重量矩阵的稀疏性改善了概括估计。最后,我们讨论如何将运营商复发网络视为深度学习模拟,以确定诸如用于从边界测量的声波方程中重建所未知的WAVESTED的边界控制的算法算法。
translated by 谷歌翻译
分析了无限维函数空间之间地图的深层替代物的近似速率,例如作为线性和非线性偏微分方程的数据到解决图。具体而言,我们研究了深神经操作员和广义多项式混乱(GPC)操作员的近似速率,用于无线性,可分开的希尔伯特空间之间的非线性,全态图。假定功能空间的运算符和输出通过稳定的仿射表示系统进行参数化。可接受的表示系统包括正常基础,RIESZ底座或所考虑的空间的合适的紧密框架。建立了代数表达速率界限,为具有有限的Sobolev或BESOV规律性的范围内的深层神经和GPC操作员替代物都作用于可分离的Hilbert空间和拟合图表的范围。我们通过表达速率界限来说明抽象速率界限的系数到测序图,用于圆环上线性椭圆形PDE。
translated by 谷歌翻译
这项调查的目的是介绍对深神经网络的近似特性的解释性回顾。具体而言,我们旨在了解深神经网络如何以及为什么要优于其他经典线性和非线性近似方法。这项调查包括三章。在第1章中,我们回顾了深层网络及其组成非线性结构的关键思想和概念。我们通过在解决回归和分类问题时将其作为优化问题来形式化神经网络问题。我们简要讨论用于解决优化问题的随机梯度下降算法以及用于解决优化问题的后传播公式,并解决了与神经网络性能相关的一些问题,包括选择激活功能,成本功能,过度适应问题和正则化。在第2章中,我们将重点转移到神经网络的近似理论上。我们首先介绍多项式近似中的密度概念,尤其是研究实现连续函数的Stone-WeierStrass定理。然后,在线性近似的框架内,我们回顾了馈电网络的密度和收敛速率的一些经典结果,然后在近似Sobolev函数中进行有关深网络复杂性的最新发展。在第3章中,利用非线性近似理论,我们进一步详细介绍了深度和近似网络与其他经典非线性近似方法相比的近似优势。
translated by 谷歌翻译
众所周知,进食前馈神经网络的学习速度很慢,并且在深度学习应用中呈现了几十年的瓶颈。例如,广泛用于训练神经网络的基于梯度的学习算法在所有网络参数都必须迭代调整时往往会缓慢起作用。为了解决这个问题,研究人员和从业人员都尝试引入随机性来减少学习要求。基于Igelnik和Pao的原始结构,具有随机输入层的重量和偏见的单层神经网络在实践中取得了成功,但是缺乏必要的理论理由。在本文中,我们开始填补这一理论差距。我们提供了一个(校正的)严格证明,即Igelnik和PAO结构是连续函数在紧凑型域上连续函数的通用近似值,并且近似错误渐近地衰减,例如$ o(1/\ sqrt {n})网络节点。然后,我们将此结果扩展到非反应设置,证明人们可以在$ n $的情况下实现任何理想的近似误差,而概率很大。我们进一步调整了这种随机神经网络结构,以近似欧几里得空间的平滑,紧凑的亚曼叶量的功能,从而在渐近和非催化形式的理论保证中提供了理论保证。最后,我们通过数值实验说明了我们在歧管上的结果。
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
在本文中,我们研究了针对泊松方程的解决方案的概率和神经网络近似,但在$ \ mathbb {r}^d $的一般边界域中,较旧或$ c^2 $数据。我们的目标是两个基本目标。首先,也是最重要的是,我们证明了泊松方程的解决方案可以通过蒙特卡洛方法在sup-norm中进行数值近似,但基于球形算法的步行略有变化。这提供了相对于相对于相对于相对于有效的估计值规定的近似误差且没有维度的诅咒。此外,样品的总数不取决于执行近似的点。作为第二个目标,我们表明获得的蒙特卡洛求解器renders relu relu深层神经网络(DNN)解决泊松问题的解决方案,其大小在尺寸$ d $以及所需的错误中大多数取决于多项式。和低多项式复杂性。
translated by 谷歌翻译
着名的工作系列(Barron,1993; Bresiman,1993; Klusowski&Barron,2018)提供了宽度$ N $的界限,所需的relu两层神经网络需要近似函数$ f $超过球。 \ mathcal {b} _r(\ mathbb {r} ^ d)$最终$ \ epsilon $,当傅立叶的数量$ c_f = \ frac {1} {(2 \ pi)^ {d / 2}} \ int _ {\ mathbb {r} ^ d} \ | \ xi \ | ^ 2 | \ hat {f}(\ xi)| \ d \ xi $是有限的。最近ongie等。 (2019)将Radon变换用作分析无限宽度Relu两层网络的工具。特别是,他们介绍了基于氡的$ \ mathcal {r} $ - norms的概念,并显示$ \ mathbb {r} ^ d $上定义的函数可以表示为无限宽度的双层神经网络如果只有在$ \ mathcal {r} $ - norm是有限的。在这项工作中,我们扩展了Ongie等人的框架。 (2019)并定义类似的基于氡的半规范($ \ mathcal {r},\ mathcal {r} $ - norms),使得函数承认在有界开放式$ \ mathcal上的无限宽度神经网络表示{ u} \ subseteq \ mathbb {r} ^ d $当它$ \ mathcal {r}时,\ mathcal {u} $ - norm是有限的。建立在这方面,我们派生稀疏(有限宽度)神经网络近似界,其优化Breiman(1993); Klusowski&Barron(2018)。最后,我们表明有限开放集的无限宽度神经网络表示不是唯一的,并研究其结构,提供模式连接的功能视图。
translated by 谷歌翻译
对于人造深神经网络,我们证明了分析函数的表达率$ f:\ mathbb {r} ^ d \ to \ mathbb {r} $中的$ l ^ 2(\ mathbb {r} ^ d,\ gamma_d )$ down $ d \ in {\ mathbb {n}} \ cup \ {\ idty \} $。 $ \ gamma_d $ denot $ \ mathbb {r} ^ d $的高斯产品概率测量。我们特别考虑relu和relu $ {} ^ $ y ^ $ yrucations for Integer $ k \ geq 2 $。对于$ d \ in \ mathbb {n} $,我们显示了$ l ^ 2(\ mathbb {r} ^ d,\ gamma_d)$的指数融合率。在$ d = \ infty $,在$ f:\ mathbb {r} ^ {\ mathbb {r}} \ to \ mathbb {r} $的适当平滑和稀疏假设下,用$ \ gamma_ \ idty $表示$ \ mathbb {r} ^ {\ mathbb {n}} $的无限(高斯)产品测量值,我们证明了$ l ^ 2(\ mathbb {r} ^ {\ mathbb { n}},\ gamma_ \ idty)$。该速率仅取决于(分析延续)的量化全阵列(分析延续)地图$ f $到$ \ mathbb {c} ^ d $中的条带产品。作为应用程序,我们将深度Relu-NNS的表达率界限进行了椭圆PDE的响应曲面与Log-Gaussian随机场输入。
translated by 谷歌翻译
We consider the problem of estimating the optimal transport map between a (fixed) source distribution $P$ and an unknown target distribution $Q$, based on samples from $Q$. The estimation of such optimal transport maps has become increasingly relevant in modern statistical applications, such as generative modeling. At present, estimation rates are only known in a few settings (e.g. when $P$ and $Q$ have densities bounded above and below and when the transport map lies in a H\"older class), which are often not reflected in practice. We present a unified methodology for obtaining rates of estimation of optimal transport maps in general function spaces. Our assumptions are significantly weaker than those appearing in the literature: we require only that the source measure $P$ satisfies a Poincar\'e inequality and that the optimal map be the gradient of a smooth convex function that lies in a space whose metric entropy can be controlled. As a special case, we recover known estimation rates for bounded densities and H\"older transport maps, but also obtain nearly sharp results in many settings not covered by prior work. For example, we provide the first statistical rates of estimation when $P$ is the normal distribution and the transport map is given by an infinite-width shallow neural network.
translated by 谷歌翻译
我们研究了两层神经网络,其领域和范围是具有可分离性的Banach空间。另外,我们假设图像空间配备了部分顺序,即它是Riesz空间。作为非线性,我们选择了取积极部分的晶格操作;如果$ \ Mathbb r^d $可值的神经网络,这对应于Relu激活函数。我们证明了特定类别功能的蒙特卡洛速率的逆近似定理和直接近似定理,从而扩展了有限维情况的现有结果。在本文的第二部分中,我们从正规化理论的角度研究,通过有限数量的嘈杂观测值在潜在空间上进行签名的措施来找到此类功能的最佳表示的问题。我们讨论称为源条件的规律性条件,并在噪声水平均为零并且样本数量以适当的速度为零时,在Bregman距离中获得代表度量的收敛速率。
translated by 谷歌翻译
在此备忘录中,我们开发了一般框架,它允许同时研究$ \ MathBB R ^ D $和惠特尼在$ \ Mathbb r的离散和非离散子集附近的insoctry扩展问题附近的标签和未标记的近对准数据问题。^ d $与某些几何形状。此外,我们调查了与集群,维度减少,流形学习,视觉以及最小的能量分区,差异和最小最大优化的相关工作。给出了谐波分析,计算机视觉,歧管学习和与我们工作的信号处理中的众多开放问题。本发明内容中的一部分工作基于纸张中查尔斯Fefferman的联合研究[48],[49],[50],[51]。
translated by 谷歌翻译
在本文中,我们考虑Barron函数$ f:[0,1]^d \ to \ mathbb {r} $的平滑度$ \ sigma> 0 $,这是可以写入\ [f(x)=的函数\ int _ {\ mathbb {r}^d} f(\ xi)\,e^{2 \ pi i \ langle x,\ xi \ rangle} \,d \ xi \ xi \ quad \ quad \ quad \ text \ text} {\ mathbb {r}^d} | f(\ xi)| \ cdot(1 + | \ xi |)^{\ sigma} \,d \ xi <\ infty。 \]对于$ \ sigma = 1 $,这些功能在机器学习中起着重要的作用,因为它们可以通过(浅)神经网络有效地近似,而不会受到维数的诅咒。对于这些函数,我们研究以下问题:给定$ m $ point样用$ f(x_1),\ dots,f(x_m)$的barron函数$ f:[0,1]^d \ to \ mathbb { r} $的平滑度$ \ sigma $,从这些样品中可以如何回收$ f $,以最佳选择采样点和重建过程?表示$ s_m(\ sigma; l^p)$在$ l^p $中测量的最佳重建错误,我们表明\ [m^{ - \ frac {1} {\ max \ max \ {p,2 \}}}} - \ \ frac {\ sigma} {d}} \ sillssim s_m(\ sigma; l^p)\ sillesim(\ ln(e + m))^{\ alpha(\ alpha(\ sigma,d) / p} \ cdot m^cdot m^ { - \ frac {1} {\ max \ {p,2 \}} - \ frac {\ sigma} {d}}}}}}},\ \],其中隐含常数仅取决于$ \ sigma $和$ d $ \ alpha(\ sigma,d)$保持为$ d \ to \ infty $。
translated by 谷歌翻译
比较概率分布是许多机器学习算法的关键。最大平均差异(MMD)和最佳运输距离(OT)是在过去几年吸引丰富的关注的概率措施之间的两类距离。本文建立了一些条件,可以通过MMD规范控制Wassersein距离。我们的作品受到压缩统计学习(CSL)理论的推动,资源有效的大规模学习的一般框架,其中训练数据总结在单个向量(称为草图)中,该训练数据捕获与所考虑的学习任务相关的信息。在CSL中的现有结果启发,我们介绍了H \“较旧的较低限制的等距属性(H \”较旧的LRIP)并表明这家属性具有有趣的保证对压缩统计学习。基于MMD与Wassersein距离之间的关系,我们通过引入和研究学习任务的Wassersein可读性的概念来提供压缩统计学习的保证,即概率分布之间的某些特定于特定的特定度量,可以由Wassersein界定距离。
translated by 谷歌翻译
通过梯度流优化平均平衡误差,研究了功能空间中神经网络的动态。我们认为,在underParameterized制度中,网络了解由与其特征值对应的率的神经切线内核(NTK)确定的整体运算符$ t_ {k ^ \ infty} $的特征功能。例如,对于SPENTE $ S ^ {D-1} $和旋转不变的权重分配的均匀分布式数据,$ t_ {k ^ \ infty} $的特征函数是球形谐波。我们的结果可以理解为描述interparameterized制度中的光谱偏压。证据使用“阻尼偏差”的概念,其中NTK物质对具有由于阻尼因子的发生而具有大特征值的特征的偏差。除了下公共条例的制度之外,阻尼偏差可用于跟踪过度分辨率设置中经验风险的动态,允许我们在文献中延长某些结果。我们得出结论,阻尼偏差在优化平方误差时提供了动态的简单和统一的视角。
translated by 谷歌翻译
现代神经网络通常以强烈的过度构造状态运行:它们包含许多参数,即使实际标签被纯粹随机的标签代替,它们也可以插入训练集。尽管如此,他们在看不见的数据上达到了良好的预测错误:插值训练集并不会导致巨大的概括错误。此外,过度散色化似乎是有益的,因为它简化了优化景观。在这里,我们在神经切线(NT)制度中的两层神经网络的背景下研究这些现象。我们考虑了一个简单的数据模型,以及各向同性协变量的矢量,$ d $尺寸和$ n $隐藏的神经元。我们假设样本量$ n $和尺寸$ d $都很大,并且它们在多项式上相关。我们的第一个主要结果是对过份术的经验NT内核的特征结构的特征。这种表征意味着必然的表明,经验NT内核的最低特征值在$ ND \ gg n $后立即从零界限,因此网络可以在同一制度中精确插值任意标签。我们的第二个主要结果是对NT Ridge回归的概括误差的表征,包括特殊情况,最小值-ULL_2 $ NORD插值。我们证明,一旦$ nd \ gg n $,测试误差就会被内核岭回归之一相对于无限宽度内核而近似。多项式脊回归的误差依次近似后者,从而通过与激活函数的高度组件相关的“自我诱导的”项增加了正则化参数。多项式程度取决于样本量和尺寸(尤其是$ \ log n/\ log d $)。
translated by 谷歌翻译
我们研究了神经网络中平方损耗训练问题的优化景观和稳定性,但通用非线性圆锥近似方案。据证明,如果认为非线性圆锥近似方案是(以适当定义的意义)比经典线性近似方法更具表现力,并且如果存在不完美的标签向量,则在方位损耗的训练问题必须在其中不稳定感知其解决方案集在训练数据中的标签向量上不连续地取决于标签向量。我们进一步证明对这些不稳定属性负责的效果也是马鞍点出现的原因和杂散的局部最小值,这可能是从全球解决方案的任意遥远的,并且既不训练问题也不是训练问题的不稳定性通常,杂散局部最小值的存在可以通过向目标函数添加正则化术语来克服衡量近似方案中参数大小的目标函数。无论可实现的可实现性是否满足,后一种结果都被证明是正确的。我们表明,我们的分析特别适用于具有可变宽度的自由结插值方案和深层和浅层神经网络的培训问题,其涉及各种激活功能的任意混合(例如,二进制,六骨,Tanh,arctan,软标志, ISRU,Soft-Clip,SQNL,Relu,Lifley Relu,Soft-Plus,Bent Identity,Silu,Isrlu和ELU)。总之,本文的发现说明了神经网络和一般非线性圆锥近似仪器的改进近似特性以直接和可量化的方式与必须解决的优化问题的不期望的性质链接,以便训练它们。
translated by 谷歌翻译