机器学习的许多成功都是基于最大程度地减少平均损失函数的基础。但是,众所周知,这种范式遭受了鲁棒性问题的影响,阻碍了其在安全 - 关键领域中的适用性。这些问题通常是通过针对最坏情况的数据扰动来解决的,该技术被称为对抗性训练。尽管经验上有效,但对抗性训练可能过于保守,从而导致名义性能和稳健性之间的不利权衡。为此,在本文中,我们提出了一个称为概率鲁棒性的框架,该框架弥合了准确但脆弱的平均情况和坚固而保守的最坏情况之间的差距,这是通过对最多而不是对所有扰动的实施强大的。从理论的角度来看,该框架克服了最差案例学习和平均案例学习的性能与样本复杂性之间的权衡。从实际的角度来看,我们提出了一种基于风险感知优化的新算法,该算法有效地平衡了平均和最差的案例性能,而相对于对抗性训练,计算成本较低。我们对MNIST,CIFAR-10和SVHN的结果说明了该框架在从平均值到最差的鲁棒性方面的优势。
translated by 谷歌翻译
尽管学习已成为现代信息处理的核心组成部分,但现在有足够的证据表明它可以导致偏见,不安全和有偏见的系统。因此,对学习要求施加要求至关重要,尤其是在达到社会,工业和医疗领域的关键应用程序时。但是,大多数现代统计问题的非跨性别性只有通过限制引入而加剧。尽管通常可以使用经验风险最小化来学习良好的无约束解决方案,即使获得满足统计约束的模型也可能具有挑战性。更重要的是,一个好。在本文中,我们通过在经验双重领域中学习来克服这个问题,在经验的双重领域中,统计学上的统计学习问题变得不受限制和确定性。我们通过界定经验二元性差距来分析这种方法的概括特性 - 即,我们的近似,可拖动解决方案与原始(非凸)统计问题的解决方案之间的差异 - 并提供实用的约束学习算法。这些结果建立了与经典学习理论的约束,从而可以明确地在学习中使用约束。我们说明了这种理论和算法受到速率受限的学习应用,这是在公平和对抗性鲁棒性中产生的。
translated by 谷歌翻译
域的概括(DG)通过利用来自多个相关分布或域的标记培训数据在看不见的测试分布上表现良好的预测因子。为了实现这一目标,标准公式优化了所有可能域的最差性能。但是,由于最糟糕的转变在实践中的转变极不可能,这通常会导致过度保守的解决方案。实际上,最近的一项研究发现,没有DG算法在平均性能方面优于经验风险最小化。在这项工作中,我们认为DG既不是最坏的问题,也不是一个普通的问题,而是概率问题。为此,我们为DG提出了一个概率框架,我们称之为可能的域概括,其中我们的关键想法是在训练期间看到的分配变化应在测试时告诉我们可能的变化。为了实现这一目标,我们将培训和测试域明确关联为从同一基础元分布中获取的,并提出了一个新的优化问题 - 分数风险最小化(QRM) - 要求该预测因子以很高的概率概括。然后,我们证明了QRM:(i)产生的预测因子,这些预测因素将具有所需概率的新域(给定足够多的域和样本); (ii)随着概括的所需概率接近一个,恢复因果预测因子。在我们的实验中,我们引入了针对DG的更全面的以分位数评估协议,并表明我们的算法在真实和合成数据上的最先进基准都优于最先进的基准。
translated by 谷歌翻译
Recently, Robey et al. propose a notion of probabilistic robustness, which, at a high-level, requires a classifier to be robust to most but not all perturbations. They show that for certain hypothesis classes where proper learning under worst-case robustness is \textit{not} possible, proper learning under probabilistic robustness \textit{is} possible with sample complexity exponentially smaller than in the worst-case robustness setting. This motivates the question of whether proper learning under probabilistic robustness is always possible. In this paper, we show that this is \textit{not} the case. We exhibit examples of hypothesis classes $\mathcal{H}$ with finite VC dimension that are \textit{not} probabilistically robustly PAC learnable with \textit{any} proper learning rule. However, if we compare the output of the learner to the best hypothesis for a slightly \textit{stronger} level of probabilistic robustness, we show that not only is proper learning \textit{always} possible, but it is possible via empirical risk minimization.
translated by 谷歌翻译
Machine learning models are often susceptible to adversarial perturbations of their inputs. Even small perturbations can cause state-of-the-art classifiers with high "standard" accuracy to produce an incorrect prediction with high confidence. To better understand this phenomenon, we study adversarially robust learning from the viewpoint of generalization. We show that already in a simple natural data model, the sample complexity of robust learning can be significantly larger than that of "standard" learning. This gap is information theoretic and holds irrespective of the training algorithm or the model family. We complement our theoretical results with experiments on popular image classification datasets and show that a similar gap exists here as well. We postulate that the difficulty of training robust classifiers stems, at least partially, from this inherently larger sample complexity.
translated by 谷歌翻译
在本讨论文件中,我们调查了有关机器学习模型鲁棒性的最新研究。随着学习算法在数据驱动的控制系统中越来越流行,必须确保它们对数据不确定性的稳健性,以维持可靠的安全至关重要的操作。我们首先回顾了这种鲁棒性的共同形式主义,然后继续讨论训练健壮的机器学习模型的流行和最新技术,以及可证明这种鲁棒性的方法。从强大的机器学习的这种统一中,我们识别并讨论了该地区未来研究的迫切方向。
translated by 谷歌翻译
后门数据中毒攻击是一种对抗的攻击,其中攻击者将几个水印,误标记的训练示例注入训练集中。水印不会影响典型数据模型的测试时间性能;但是,该模型在水印示例中可靠地错误。为获得对后门数据中毒攻击的更好的基础认识,我们展示了一个正式的理论框架,其中一个人可以讨论对分类问题的回溯数据中毒攻击。然后我们使用它来分析这些攻击的重要统计和计算问题。在统计方面,我们识别一个参数,我们称之为记忆能力,捕捉到后门攻击的学习问题的内在脆弱性。这使我们能够争论几个自然学习问题的鲁棒性与后门攻击。我们的结果,攻击者涉及介绍后门攻击的明确建设,我们的鲁棒性结果表明,一些自然问题设置不能产生成功的后门攻击。从计算的角度来看,我们表明,在某些假设下,对抗训练可以检测训练集中的后门的存在。然后,我们表明,在类似的假设下,我们称之为呼叫滤波和鲁棒概括的两个密切相关的问题几乎等同。这意味着它既是渐近必要的,并且足以设计算法,可以识别训练集中的水印示例,以便获得既广泛概念的学习算法,以便在室外稳健。
translated by 谷歌翻译
尽管在各种应用中取得了显着成功,但众所周知,在呈现出分发数据时,深度学习可能会失败。为了解决这一挑战,我们考虑域泛化问题,其中使用从相关训练域系列绘制的数据进行训练,然后在不同和看不见的测试域中评估预测器。我们表明,在数据生成的自然模型和伴随的不变性条件下,域泛化问​​题等同于无限维约束的统计学习问题;此问题构成了我们的方法的基础,我们呼叫基于模型的域泛化。由于解决深度学习中受约束优化问题的固有挑战,我们利用非凸显二元性理论,在二元间隙上紧张的界限发展这种统计问题的不受约束放松。基于这种理论动机,我们提出了一种具有收敛保证的新型域泛化算法。在我们的实验中,我们在几个基准中报告了最多30个百分点的阶段概括基座,包括彩色,Camelyon17-Wilds,FMOW-Wilds和PAC。
translated by 谷歌翻译
We identify a trade-off between robustness and accuracy that serves as a guiding principle in the design of defenses against adversarial examples. Although this problem has been widely studied empirically, much remains unknown concerning the theory underlying this trade-off. In this work, we decompose the prediction error for adversarial examples (robust error) as the sum of the natural (classification) error and boundary error, and provide a differentiable upper bound using the theory of classification-calibrated loss, which is shown to be the tightest possible upper bound uniform over all probability distributions and measurable predictors. Inspired by our theoretical analysis, we also design a new defense method, TRADES, to trade adversarial robustness off against accuracy. Our proposed algorithm performs well experimentally in real-world datasets. The methodology is the foundation of our entry to the NeurIPS 2018 Adversarial Vision Challenge in which we won the 1st place out of ~2,000 submissions, surpassing the runner-up approach by 11.41% in terms of mean 2 perturbation distance.
translated by 谷歌翻译
We show how to turn any classifier that classifies well under Gaussian noise into a new classifier that is certifiably robust to adversarial perturbations under the 2 norm. This "randomized smoothing" technique has been proposed recently in the literature, but existing guarantees are loose. We prove a tight robustness guarantee in 2 norm for smoothing with Gaussian noise. We use randomized smoothing to obtain an ImageNet classifier with e.g. a certified top-1 accuracy of 49% under adversarial perturbations with 2 norm less than 0.5 (=127/255). No certified defense has been shown feasible on ImageNet except for smoothing. On smaller-scale datasets where competing approaches to certified 2 robustness are viable, smoothing delivers higher certified accuracies. Our strong empirical results suggest that randomized smoothing is a promising direction for future research into adversarially robust classification. Code and models are available at http: //github.com/locuslab/smoothing.
translated by 谷歌翻译
对抗性的鲁棒性已成为机器学习越来越兴趣的话题,因为观察到神经网络往往会变得脆弱。我们提出了对逆转防御的信息几何表述,并引入Fire,这是一种针对分类跨透明镜损失的新的Fisher-Rao正则化,这基于对应于自然和受扰动输入特征的软磁输出之间的测量距离。基于SoftMax分布类的信息几何特性,我们为二进制和多类案例提供了Fisher-Rao距离(FRD)的明确表征,并绘制了一些有趣的属性以及与标准正则化指标的连接。此外,对于一个简单的线性和高斯模型,我们表明,在精度 - 舒适性区域中的所有帕累托最佳点都可以通过火力达到,而其他最先进的方法则可以通过火灾。从经验上讲,我们评估了经过标准数据集拟议损失的各种分类器的性能,在清洁和健壮的表现方面同时提高了1 \%的改进,同时将培训时间降低了20 \%,而不是表现最好的方法。
translated by 谷歌翻译
现代神经网络Excel在图像分类中,但它们仍然容易受到常见图像损坏,如模糊,斑点噪音或雾。最近的方法关注这个问题,例如Augmix和Deepaulment,引入了在预期运行的防御,以期望图像损坏分布。相比之下,$ \ ell_p $ -norm界限扰动的文献侧重于针对最坏情况损坏的防御。在这项工作中,我们通过提出防范内人来调和两种方法,这是一种优化图像到图像模型的参数来产生对外损坏的增强图像的技术。我们理论上激发了我们的方法,并为其理想化版本的一致性以及大纲领提供了足够的条件。我们的分类机器在预期对CiFar-10-C进行的常见图像腐败基准上提高了最先进的,并改善了CIFAR-10和ImageNet上的$ \ ell_p $ -norm有界扰动的最坏情况性能。
translated by 谷歌翻译
我们研究了基于分布强大的机会约束的对抗性分类模型。我们表明,在Wasserstein模糊性下,该模型旨在最大限度地减少距离分类距离的条件值 - 风险,并且我们探讨了前面提出的对抗性分类模型和最大限度的分类机的链接。我们还提供了用于线性分类的分布鲁棒模型的重构,并且表明它相当于最小化正则化斜坡损失目标。数值实验表明,尽管这种配方的非凸起,但是标准的下降方法似乎会聚到全球最小值器。灵感来自这种观察,我们表明,对于某一类分布,正则化斜坡损失最小化问题的唯一静止点是全球最小化器。
translated by 谷歌翻译
对抗性的鲁棒性已经成为深度学习的核心目标,无论是在理论和实践中。然而,成功的方法来改善对抗的鲁棒性(如逆势训练)在不受干扰的数据上大大伤害了泛化性能。这可能会对对抗性鲁棒性如何影响现实世界系统的影响(即,如果它可以提高未受干扰的数据的准确性),许多人可能选择放弃鲁棒性)。我们提出内插对抗培训,该培训最近雇用了在对抗培训框架内基于插值的基于插值的培训方法。在CiFar -10上,对抗性训练增加了标准测试错误(当没有对手时)从4.43%到12.32%,而我们的内插对抗培训我们保留了对抗性的鲁棒性,同时实现了仅6.45%的标准测试误差。通过我们的技术,强大模型标准误差的相对增加从178.1%降至仅为45.5%。此外,我们提供内插对抗性培训的数学分析,以确认其效率,并在鲁棒性和泛化方面展示其优势。
translated by 谷歌翻译
所有著名的机器学习算法构成了受监督和半监督的学习工作,只有在一个共同的假设下:培训和测试数据遵循相同的分布。当分布变化时,大多数统计模型必须从新收集的数据中重建,对于某些应用程序,这些数据可能是昂贵或无法获得的。因此,有必要开发方法,以减少在相关领域中可用的数据并在相似领域中进一步使用这些数据,从而减少需求和努力获得新的标签样品。这引起了一个新的机器学习框架,称为转移学习:一种受人类在跨任务中推断知识以更有效学习的知识能力的学习环境。尽管有大量不同的转移学习方案,但本调查的主要目的是在特定的,可以说是最受欢迎的转移学习中最受欢迎的次级领域,概述最先进的理论结果,称为域适应。在此子场中,假定数据分布在整个培训和测试数据中发生变化,而学习任务保持不变。我们提供了与域适应性问题有关的现有结果的首次最新描述,该结果涵盖了基于不同统计学习框架的学习界限。
translated by 谷歌翻译
我们考虑使用对抗鲁棒性学习的样本复杂性。对于此问题的大多数现有理论结果已经考虑了数据中不同类别在一起或重叠的设置。通过一些实际应用程序,我们认为,相比之下,存在具有完美精度和稳健性的分类器的分类器的良好分离的情况,并表明样品复杂性叙述了一个完全不同的故事。具体地,对于线性分类器,我们显示了大类分离的分布式,其中任何算法的预期鲁棒丢失至少是$ \ω(\ FRAC {D} {n})$,而最大边距算法已预期标准亏损$ o(\ frac {1} {n})$。这表明了通过现有技术不能获得的标准和鲁棒损耗中的间隙。另外,我们介绍了一种算法,给定鲁棒率半径远小于类之间的间隙的实例,给出了预期鲁棒损失的解决方案是$ O(\ FRAC {1} {n})$。这表明,对于非常好的数据,可实现$ O(\ FRAC {1} {n})$的收敛速度,否则就是这样。我们的结果适用于任何$ \ ell_p $ norm以$ p> 1 $(包括$ p = \ idty $)为稳健。
translated by 谷歌翻译
以良好的样本外观的方式设计用于机器学习和决策的数据驱动配方是一个关键挑战。良好的样本性能并不能保证良好的样本外部性能通常被称为过度拟合的观察结果。实际过度拟合通常不能归因于一个原因,而是一次由几个因素引起的。我们在这里考虑三个过度拟合来源:(i)使用有限样本数据的统计误差,(ii)仅在数据点仅以有限的精度测量数据点时发生的数据噪声,最后(iii)数据错误指定,其中a误解所有数据中的一小部分可能会完全损坏。我们认为,尽管现有的数据驱动的配方可能会孤立地对这三个来源之一,但它们并不能同时对所有过度拟合来源提供全面的保护。我们设计了一种新型的数据驱动公式,它确实可以保证这种整体保护,并且在计算上也可行。我们的分布在强大的优化配方中可以解释为kullback-leibler和Levy-Prokhorov强大优化配方的新型组合。最后,我们展示了在分类和回归问题的背景下,几种受欢迎的正则化和健壮的配方如何减少到我们提出的更通用的配方的特定情况下。
translated by 谷歌翻译
我们理论上和经验地证明,对抗性鲁棒性可以显着受益于半体验学习。从理论上讲,我们重新审视了Schmidt等人的简单高斯模型。这显示了标准和稳健分类之间的示例复杂性差距。我们证明了未标记的数据桥接这种差距:简单的半体验学习程序(自我训练)使用相同数量的达到高标准精度所需的标签实现高的强大精度。经验上,我们增强了CiFar-10,使用50万微小的图像,使用了8000万微小的图像,并使用强大的自我训练来优于最先进的鲁棒精度(i)$ \ ell_ infty $鲁棒性通过对抗培训和(ii)认证$ \ ell_2 $和$ \ ell_ \ infty $鲁棒性通过随机平滑的几个强大的攻击。在SVHN上,添加DataSet自己的额外训练集,删除的标签提供了4到10个点的增益,在使用额外标签的1点之内。
translated by 谷歌翻译
当前,随机平滑被认为是获得确切可靠分类器的最新方法。尽管其表现出色,但该方法仍与各种严重问题有关,例如``认证准确性瀑布'',认证与准确性权衡甚至公平性问题。已经提出了依赖输入的平滑方法,目的是克服这些缺陷。但是,我们证明了这些方法缺乏正式的保证,因此所产生的证书是没有道理的。我们表明,一般而言,输入依赖性平滑度遭受了维数的诅咒,迫使方差函数具有低半弹性。另一方面,我们提供了一个理论和实用的框架,即使在严格的限制下,即使在有维度的诅咒的情况下,即使在存在维度的诅咒的情况下,也可以使用依赖输入的平滑。我们提供平滑方差功能的一种混凝土设计,并在CIFAR10和MNIST上进行测试。我们的设计减轻了经典平滑的一些问题,并正式下划线,但仍需要进一步改进设计。
translated by 谷歌翻译
许多最先进的对抗性培训方法利用对抗性损失的上限来提供安全保障。然而,这些方法需要在每个训练步骤中计算,该步骤不能包含在梯度中的梯度以进行反向化。我们基于封闭形式的对抗性损失的封闭溶液引入了一种新的更具内容性的对抗性培训,可以有效地培养了背部衰退。通过稳健优化的最先进的工具促进了这一界限。我们使用我们的方法推出了两种新方法。第一种方法(近似稳健的上限或arub)使用网络的第一阶近似以及来自线性鲁棒优化的基本工具,以获得可以容易地实现的对抗丢失的近似偏置。第二种方法(鲁棒上限或摩擦)计算对抗性损失的精确上限。在各种表格和视觉数据集中,我们展示了我们更加原则的方法的有效性 - 摩擦比最先进的方法更强大,而是较大的扰动的最新方法,而谷会匹配的性能 - 小扰动的艺术方法。此外,摩擦和灌注速度比标准对抗性培训快(以牺牲内存增加)。重现结果的所有代码都可以在https://github.com/kimvc7/trobustness找到。
translated by 谷歌翻译