可靠的评估方法对于构建强大的分布(OOD)检测器至关重要。OOD检测器的当前鲁棒性评估协议依赖于向数据注射扰动。但是,扰动不太可能自然发生或与数据内容无关,从而提供了有限的鲁棒性评估。在本文中,我们提出了对OOD检测器(EVG)的评估-VIA产生,这是一种新的协议,用于研究异常值变化模式下OOD检测器的鲁棒性。EVG利用生成模型合成合理的异常值,并采用MCMC采样来发现探测器最高置信度的分布式分类为分类。我们使用EVG对最先进的OOD检测器的性能进行了全面的基准比较,从而揭示了先前被忽视的弱点。
translated by 谷歌翻译
检测分配(OOD)输入对于安全部署现实世界的深度学习模型至关重要。在评估良性分布和OOD样品时,检测OOD示例的现有方法很好。然而,在本文中,我们表明,当在分发的分布和OOD输入时,现有的检测机制可以极其脆弱,其具有最小的对抗扰动,这不会改变其语义。正式地,我们广泛地研究了对共同的检测方法的强大分布检测问题,并表明最先进的OOD探测器可以通过对分布和ood投入增加小扰动来容易地欺骗。为了抵消这些威胁,我们提出了一种称为芦荟的有效算法,它通过将模型暴露于对抗性inlier和异常值示例来执行鲁棒训练。我们的方法可以灵活地结合使用,并使现有方法稳健。在共同的基准数据集上,我们表明芦荟大大提高了最新的ood检测的稳健性,对CiFar-10和46.59%的CiFar-100改善了58.4%的Auroc改善。
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译
如今,几次拍摄设置中的分类和分配(OOD)检测仍然具有具有挑战性的目标,因为罕见和几次拍摄设置中的样品有限,并且由于对抗攻击。完成这些目标对于安全,安全和防御的关键系统非常重要。同时,由于深度神经网络分类器为远离训练数据的样品集中置信,因此检测是挑战的具有挑战性。为了解决这些限制,我们提出了几次射击的鲁棒(FROB)模型进行分类和少量拍摄的检测。我们设计了肥胖,以改善鲁棒性和可靠的置信度预测,对几次拍摄的检测。我们生成正常类分布的支持边界,并将其与少量异常曝光(OE)相结合。我们提出了一种基于生成和鉴别模型的自我监督的学习少量置信界限方法。 FROB的贡献是产生的边界以自我监督的学习方式的结合,并在学习边界处施加低信心。 Frob隐含地在边界上产生强烈的对抗性样本,并强制来自ood的样本,包括我们的边界,对分类器的信心不太自信。 FROB通过适用于未知,在野外的测试集中实现概念的概念,与训练数据集无关。为了提高稳健性,甚至可以为零拍摄重新设计OE。通过包括我们的边界,FROB减少了与模型的几次稳健性相关的阈值;它保持了大约独立于几幅射击的表现。不同集合和单级分类(OCC)数据的少量射击鲁棒性分析评估(OCC)数据显示,FROB在鲁棒性方面实现了竞争性能,以鲁棒性对异常较少的样本人口和可变性实现了基准。
translated by 谷歌翻译
基于密度的分布(OOD)检测最近显示了检测OOD图像的任务不可靠。基于各种密度比的方法实现了良好的经验性能,但是方法通常缺乏原则性的概率建模解释。在这项工作中,我们建议在建立基于能量的模型并采用不同基础分布的新框架下统一基于密度比的方法。在我们的框架下,密度比可以看作是隐式语义分布的非均衡密度。此外,我们建议通过类比率估计直接估计数据样本的密度比。与最近的工作相比,我们报告了有关OOD图像问题的竞争结果,这些工作需要对任务进行深层生成模型的培训。我们的方法使一个简单而有效的途径可以解决OOD检测问题。
translated by 谷歌翻译
The task of out-of-distribution (OOD) detection is vital to realize safe and reliable operation for real-world applications. After the failure of likelihood-based detection in high dimensions had been shown, approaches based on the \emph{typical set} have been attracting attention; however, they still have not achieved satisfactory performance. Beginning by presenting the failure case of the typicality-based approach, we propose a new reconstruction error-based approach that employs normalizing flow (NF). We further introduce a typicality-based penalty, and by incorporating it into the reconstruction error in NF, we propose a new OOD detection method, penalized reconstruction error (PRE). Because the PRE detects test inputs that lie off the in-distribution manifold, it effectively detects adversarial examples as well as OOD examples. We show the effectiveness of our method through the evaluation using natural image datasets, CIFAR-10, TinyImageNet, and ILSVRC2012.
translated by 谷歌翻译
归一化流是突出的深层生成模型,提供了易诊的概率分布和有效密度估计。但是,众所周知,在检测到分配(OOD)输入时,它们是众所周知的,因为它们直接在其潜在空间中对输入表示的本地特征进行了编码。在本文中,我们通过演示流动,如果通过注意机制延伸,可以通过表明流动,可以可靠地检测到包括对抗攻击的异常值。我们的方法不需要对培训的异常数据,并通过在多样化的实验设置中报告最先进的性能来展示我们的ood检测方法的效率。代码在https://github.com/computationalradiationphysphysics/inflow上提供。
translated by 谷歌翻译
作为研究界,我们仍然缺乏对对抗性稳健性的进展的系统理解,这通常使得难以识别训练强大模型中最有前途的想法。基准稳健性的关键挑战是,其评估往往是出错的导致鲁棒性高估。我们的目标是建立对抗性稳健性的标准化基准,尽可能准确地反映出考虑在合理的计算预算范围内所考虑的模型的稳健性。为此,我们首先考虑图像分类任务并在允许的型号上引入限制(可能在将来宽松)。我们评估了与AutoAtrack的对抗鲁棒性,白和黑箱攻击的集合,最近在大规模研究中显示,与原始出版物相比,改善了几乎所有稳健性评估。为防止对自动攻击进行新防御的过度适应,我们欢迎基于自适应攻击的外部评估,特别是在自动攻击稳健性潜在高估的地方。我们的排行榜,托管在https://robustbench.github.io/,包含120多个模型的评估,并旨在反映在$ \ ell_ \ infty $的一套明确的任务上的图像分类中的当前状态 - 和$ \ ell_2 $ -Threat模型和共同腐败,未来可能的扩展。此外,我们开源源是图书馆https://github.com/robustbench/robustbench,可以提供对80多个强大模型的统一访问,以方便他们的下游应用程序。最后,根据收集的模型,我们分析了稳健性对分布换档,校准,分配检测,公平性,隐私泄漏,平滑度和可转移性的影响。
translated by 谷歌翻译
无监督的分销(U-OOD)检测最近引起了很多关注,因为它在关键任务系统中的重要性以及对其监督对方的更广泛的适用性。尽管注意力增加,U-OOD方法遭受了重要的缺点。通过对不同的基准和图像方式进行大规模评估,我们在这项工作中展示了最受欢迎的最先进的方法无法始终如一地始终基于Mahalanobis距离(Mahaad)的简单且相对未知的异常探测器。这些方法不一致的一个关键原因是缺乏U-OOD的正式描述。通过一个简单的思想实验,我们提出了基于培训数据集的不变性的U-OOD的表征。我们展示了这种表征如何在众所周置的Mahaad方法中体现在不知不觉中,从而解释了其质量。此外,我们的方法可用于解释U-OOD探测器的预测,并为评估未来U-OOD方法的良好实践提供见解。
translated by 谷歌翻译
已知现代深度神经网络模型将错误地将分布式(OOD)测试数据分类为具有很高信心的分数(ID)培训课程之一。这可能会对关键安全应用产生灾难性的后果。一种流行的缓解策略是训练单独的分类器,该分类器可以在测试时间检测此类OOD样本。在大多数实际设置中,在火车时间尚不清楚OOD的示例,因此,一个关键问题是:如何使用合成OOD样品来增加ID数据以训练这样的OOD检测器?在本文中,我们为称为CNC的OOD数据增强提出了一种新颖的复合腐败技术。 CNC的主要优点之一是,除了培训集外,它不需要任何固定数据。此外,与当前的最新技术(SOTA)技术不同,CNC不需要在测试时间进行反向传播或结合,从而使我们的方法在推断时更快。我们与过去4年中主要会议的20种方法进行了广泛的比较,表明,在OOD检测准确性和推理时间方面,使用基于CNC的数据增强训练的模型都胜过SOTA。我们包括详细的事后分析,以研究我们方法成功的原因,并确定CNC样本的较高相对熵和多样性是可能的原因。我们还通过对二维数据集进行零件分解分析提供理论见解,以揭示(视觉和定量),我们的方法导致ID类别周围的边界更紧密,从而更好地检测了OOD样品。源代码链接:https://github.com/cnc-ood
translated by 谷歌翻译
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small-and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.
translated by 谷歌翻译
深度神经网络对各种任务取得了出色的性能,但它们具有重要问题:即使对于完全未知的样本,也有过度自信的预测。已经提出了许多研究来成功过滤出这些未知的样本,但它们仅考虑狭窄和特定的任务,称为错误分类检测,开放式识别或分布外检测。在这项工作中,我们认为这些任务应该被视为根本存在相同的问题,因为理想的模型应该具有所有这些任务的检测能力。因此,我们介绍了未知的检测任务,以先前的单独任务的整合,用于严格检查深度神经网络对广谱的广泛未知样品的检测能力。为此,构建了不同尺度上的统一基准数据集,并且存在现有流行方法的未知检测能力进行比较。我们发现深度集合始终如一地优于检测未知的其他方法;但是,所有方法只针对特定类型的未知方式成功。可重复的代码和基准数据集可在https://github.com/daintlab/unknown-detection-benchmarks上获得。
translated by 谷歌翻译
在值得信赖的机器学习中,这是一个重要的问题,可以识别与分配任务无关的输入的分布(OOD)输入。近年来,已经提出了许多分布式检测方法。本文的目的是识别共同的目标以及确定不同OOD检测方法的隐式评分函数。我们专注于在培训期间使用替代OOD数据的方法,以学习在测试时概括为新的未见外部分布的OOD检测分数。我们表明,内部和(不同)外部分布之间的二元歧视等同于OOD检测问题的几种不同的公式。当与标准分类器以共同的方式接受培训时,该二进制判别器达到了类似于离群暴露的OOD检测性能。此外,我们表明,异常暴露所使用的置信损失具有隐式评分函数,在训练和测试外部分配相同的情况下,以非平凡的方式与理论上最佳评分功能有所不同,这又是类似于训练基于能量的OOD检测器或添加背景类时使用的一种。在实践中,当以完全相同的方式培训时,所有这些方法的性能类似。
translated by 谷歌翻译
Determining whether inputs are out-of-distribution (OOD) is an essential building block for safely deploying machine learning models in the open world. However, previous methods relying on the softmax confidence score suffer from overconfident posterior distributions for OOD data. We propose a unified framework for OOD detection that uses an energy score. We show that energy scores better distinguish in-and out-of-distribution samples than the traditional approach using the softmax scores. Unlike softmax confidence scores, energy scores are theoretically aligned with the probability density of the inputs and are less susceptible to the overconfidence issue. Within this framework, energy can be flexibly used as a scoring function for any pre-trained neural classifier as well as a trainable cost function to shape the energy surface explicitly for OOD detection. On a CIFAR-10 pre-trained WideResNet, using the energy score reduces the average FPR (at TPR 95%) by 18.03% compared to the softmax confidence score. With energy-based training, our method outperforms the state-of-the-art on common benchmarks.
translated by 谷歌翻译
我们研究了一种基于对抗性训练(AT)的学习基于能量的模型(EBM)的新方法。我们表明(二进制)学习一种特殊的能量功能,可以模拟数据分布的支持,并且学习过程与基于MCMC的EBM的最大似然学习密切相关。我们进一步提出了改进的与AT生成建模的技术,并证明这种新方法能够产生多样化和现实的图像。除了具有竞争性的图像生成性能到明确的EBM外,研究的方法还可以稳定训练,非常适合图像翻译任务,并且表现出强大的分布外对抗性鲁棒性。我们的结果证明了AT生成建模方法的生存能力,表明AT是学习EBM的竞争性替代方法。
translated by 谷歌翻译
检测到分布(OOD)样本对于在现实世界中的分类器的安全部署至关重要。但是,已知深层神经网络对异常数据过于自信。现有作品直接设计得分功能,通过挖掘分别分类器(ID)和OOD的不一致性。在本文中,我们基于以下假设,即对ID数据进行训练的自动编码器无法重建OOD和ID,我们进一步补充了这种不一致性。我们提出了一种新颖的方法,读取(重建误差聚合检测器),以统一分类器和自动编码器的不一致。具体而言,原始像素的重建误差转换为分类器的潜在空间。我们表明,转换后的重建误差桥接了语义差距,并从原始的传承了检测性能。此外,我们提出了一种调整策略,以根据OOD数据的细粒度表征来减轻自动编码器的过度自信问题。在两种情况下,我们分别提出了方法的两个变体,即仅基于预先训练的分类器和读取 - 读取器(欧几里得距离),即读取MD(Mahalanobis距离),该分类器重新训练分类器。我们的方法不需要访问测试时间数据以进行微调超参数。最后,我们通过与最先进的OOD检测算法进行了广泛的比较来证明所提出的方法的有效性。在CIFAR-10预先训练的WideresNet上,我们的方法将平均FPR@95TPR降低了9.8%,而不是先前的最新ART。
translated by 谷歌翻译
异常检测任务在AI安全中起着至关重要的作用。处理这项任务存在巨大的挑战。观察结果表明,深度神经网络分类器通常倾向于以高信心将分布(OOD)输入分为分配类别。现有的工作试图通过在培训期间向分类器暴露于分类器时明确对分类器施加不确定性来解决问题。在本文中,我们提出了一种替代概率范式,该范式实际上对OOD检测任务既有用,又可行。特别是,我们在培训过程中施加了近距离和离群数据之间的统计独立性,以确保inlier数据在培训期间向深度估计器显示有关OOD数据的信息很少。具体而言,我们通过Hilbert-Schmidt独立标准(HSIC)估算了Inlier和离群数据之间的统计依赖性,并在培训期间对此类度量进行了惩罚。我们还将方法与推理期间的新型统计测试相关联,加上我们的原则动机。经验结果表明,我们的方法对各种基准测试的OOD检测是有效且可靠的。与SOTA模型相比,我们的方法在FPR95,AUROC和AUPR指标方面取得了重大改进。代码可用:\ url {https://github.com/jylins/hone}。
translated by 谷歌翻译
本文我们的目标是利用异质的温度缩放作为校准策略(OOD)检测。此处的异质性是指每个样品的最佳温度参数可能不同,而不是传统的方法对整个分布使用相同的值。为了实现这一目标,我们提出了一种称为锚定的新培训策略,可以估算每个样品的适当温度值,从而导致几个基准的最新OOD检测性能。使用NTK理论,我们表明该温度函数估计与分类器的认知不确定性紧密相关,这解释了其行为。与某些表现最佳的OOD检测方法相反,我们的方法不需要暴露于其他离群数据集,自定义校准目标或模型结合。通过具有不同OOD检测设置的经验研究 - 远处,OOD附近和语义相干OOD - 我们建立了一种高效的OOD检测方法。可以在此处访问代码和模型-https://github.com/rushilanirudh/amp
translated by 谷歌翻译
分布(OOD)检测对于确保机器学习系统的可靠性和安全性至关重要。例如,在自动驾驶中,我们希望驾驶系统在发现在训练时间中从未见过的异常​​场景或对象时,发出警报并将控件移交给人类,并且无法做出安全的决定。该术语《 OOD检测》于2017年首次出现,此后引起了研究界的越来越多的关注,从而导致了大量开发的方法,从基于分类到基于密度到基于距离的方法。同时,其他几个问题,包括异常检测(AD),新颖性检测(ND),开放式识别(OSR)和离群检测(OD)(OD),在动机和方法方面与OOD检测密切相关。尽管有共同的目标,但这些主题是孤立发展的,它们在定义和问题设定方面的细微差异通常会使读者和从业者感到困惑。在这项调查中,我们首先提出一个称为广义OOD检测的统一框架,该框架涵盖了上述五个问题,即AD,ND,OSR,OOD检测和OD。在我们的框架下,这五个问题可以看作是特殊情况或子任务,并且更容易区分。然后,我们通过总结了他们最近的技术发展来审查这五个领域中的每一个,特别关注OOD检测方法。我们以公开挑战和潜在的研究方向结束了这项调查。
translated by 谷歌翻译
Deep neural networks have attained remarkable performance when applied to data that comes from the same distribution as that of the training set, but can significantly degrade otherwise. Therefore, detecting whether an example is out-of-distribution (OoD) is crucial to enable a system that can reject such samples or alert users. Recent works have made significant progress on OoD benchmarks consisting of small image datasets. However, many recent methods based on neural networks rely on training or tuning with both in-distribution and out-of-distribution data. The latter is generally hard to define a-priori, and its selection can easily bias the learning. We base our work on a popular method ODIN 1 [21], proposing two strategies for freeing it from the needs of tuning with OoD data, while improving its OoD detection performance. We specifically propose to decompose confidence scoring as well as a modified input pre-processing method. We show that both of these significantly help in detection performance. Our further analysis on a larger scale image dataset shows that the two types of distribution shifts, specifically semantic shift and non-semantic shift, present a significant difference in the difficulty of the problem, providing an analysis of when ODIN-like strategies do or do not work.
translated by 谷歌翻译