无监督的分销(U-OOD)检测最近引起了很多关注,因为它在关键任务系统中的重要性以及对其监督对方的更广泛的适用性。尽管注意力增加,U-OOD方法遭受了重要的缺点。通过对不同的基准和图像方式进行大规模评估,我们在这项工作中展示了最受欢迎的最先进的方法无法始终如一地始终基于Mahalanobis距离(Mahaad)的简单且相对未知的异常探测器。这些方法不一致的一个关键原因是缺乏U-OOD的正式描述。通过一个简单的思想实验,我们提出了基于培训数据集的不变性的U-OOD的表征。我们展示了这种表征如何在众所周置的Mahaad方法中体现在不知不觉中,从而解释了其质量。此外,我们的方法可用于解释U-OOD探测器的预测,并为评估未来U-OOD方法的良好实践提供见解。
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译
异常检测是一种既定的研究区,寻求识别出预定分布外的样本。异常检测管道由两个主要阶段组成:(1)特征提取和(2)正常评分分配。最近的论文使用预先训练的网络进行特征提取,实现最先进的结果。然而,使用预先训练的网络没有完全利用火车时间可用的正常样本。本文建议通过使用教师学生培训利用此信息。在我们的环境中,佩带的教师网络用于训练正常训练样本上的学生网络。由于学生网络仅在正常样本上培训,因此预计将偏离异常情况下的教师网络。这种差异可以用作预先训练的特征向量的互补表示。我们的方法 - 变换 - 利用预先训练的视觉变压器(VIV)来提取两个特征向量:预先接受的(不可知论者)功能和教师 - 学生(微调)功能。我们报告最先进的AUROC导致共同的单向设置,其中一个类被认为是正常的,其余的被认为是异常的,并且多模式设置,其中所有类别但是一个被认为是正常的,只有一个类被认为是异常的。代码可在https://github.com/matancohen1/transformaly获得。
translated by 谷歌翻译
分布(OOD)检测对于确保机器学习系统的可靠性和安全性至关重要。例如,在自动驾驶中,我们希望驾驶系统在发现在训练时间中从未见过的异常​​场景或对象时,发出警报并将控件移交给人类,并且无法做出安全的决定。该术语《 OOD检测》于2017年首次出现,此后引起了研究界的越来越多的关注,从而导致了大量开发的方法,从基于分类到基于密度到基于距离的方法。同时,其他几个问题,包括异常检测(AD),新颖性检测(ND),开放式识别(OSR)和离群检测(OD)(OD),在动机和方法方面与OOD检测密切相关。尽管有共同的目标,但这些主题是孤立发展的,它们在定义和问题设定方面的细微差异通常会使读者和从业者感到困惑。在这项调查中,我们首先提出一个称为广义OOD检测的统一框架,该框架涵盖了上述五个问题,即AD,ND,OSR,OOD检测和OD。在我们的框架下,这五个问题可以看作是特殊情况或子任务,并且更容易区分。然后,我们通过总结了他们最近的技术发展来审查这五个领域中的每一个,特别关注OOD检测方法。我们以公开挑战和潜在的研究方向结束了这项调查。
translated by 谷歌翻译
我们考虑使用深度神经网络时检测到(分发外)输入数据的问题,并提出了一种简单但有效的方法来提高几种流行的ood检测方法对标签换档的鲁棒性。我们的作品是通过观察到的,即大多数现有的OOD检测算法考虑整个训练/测试数据,无论每个输入激活哪个类进入(级别差异)。通过广泛的实验,我们发现这种做法导致探测器,其性能敏感,易于标记换档。为了解决这个问题,我们提出了一种类别的阈值方案,可以适用于大多数现有的OOD检测算法,并且即使在测试分布的标签偏移存在下也可以保持相似的OOD检测性能。
translated by 谷歌翻译
开放式识别使深度神经网络(DNN)能够识别未知类别的样本,同时在已知类别的样本上保持高分类精度。基于自动编码器(AE)和原型学习的现有方法在处理这项具有挑战性的任务方面具有巨大的潜力。在这项研究中,我们提出了一种新的方法,称为类别特定的语义重建(CSSR),该方法整合了AE和原型学习的力量。具体而言,CSSR用特定于类的AE表示的歧管替代了原型点。与传统的基于原型的方法不同,CSSR在单个AE歧管上的每个已知类模型,并通过AE的重建误差来测量类归属感。特定于类的AE被插入DNN主链的顶部,并重建DNN而不是原始图像所学的语义表示。通过端到端的学习,DNN和AES互相促进,以学习歧视性和代表性信息。在多个数据集上进行的实验结果表明,所提出的方法在封闭式和开放式识别中都达到了出色的性能,并且非常简单且灵活地将其纳入现有框架中。
translated by 谷歌翻译
诸如深神经网络(DNN)之类的机器学习方法,尽管他们在不同域中取得了成功,但是众所周知,通常在训练分布之外的输入上具有高信心产生不正确的预测。在安全关键域中的DNN部署需要检测分配超出(OOD)数据,以便DNN可以避免对那些人进行预测。最近已经开发了许多方法,以便检测,但仍有改进余地。我们提出了新的方法IdeCode,利用了用于共形OOD检测的分销标准。它依赖于在电感共形异常检测框架中使用的新基础非符合性测量和新的聚合方法,从而保证了有界误报率。我们通过在图像和音频数据集上的实验中展示了IDecode的功效,获得了最先进的结果。我们还表明Idecode可以检测对抗性示例。
translated by 谷歌翻译
在运行时检测新颖类的问题称为开放式检测,对于各种现实世界应用,例如医疗应用,自动驾驶等。在深度学习的背景下进行开放式检测涉及解决两个问题:(i):(i)必须将输入图像映射到潜在表示中,该图像包含足够的信息来检测异常值,并且(ii)必须学习一个可以从潜在表示中提取此信息以识别异常情况的异常评分函数。深度异常检测方法的研究缓慢进展。原因之一可能是大多数论文同时引入了新的表示学习技术和新的异常评分方法。这项工作的目的是通过提供分别衡量表示学习和异常评分的有效性的方法来改善这种方法。这项工作做出了两项方法论贡献。首先是引入甲骨文异常检测的概念,以量化学习潜在表示中可用的信息。第二个是引入Oracle表示学习,该学习产生的表示形式可以保证足以准确的异常检测。这两种技术可帮助研究人员将学习表示的质量与异常评分机制的性能分开,以便他们可以调试和改善系统。这些方法还为通过更好的异常评分机制改善了多少开放类别检测提供了上限。两个牙齿的组合给出了任何开放类别检测方法可以实现的性能的上限。这项工作介绍了这两种Oracle技术,并通过将它们应用于几种领先的开放类别检测方法来演示其实用性。
translated by 谷歌翻译
Deep neural networks (DNN) have outstanding performance in various applications. Despite numerous efforts of the research community, out-of-distribution (OOD) samples remain significant limitation of DNN classifiers. The ability to identify previously unseen inputs as novel is crucial in safety-critical applications such as self-driving cars, unmanned aerial vehicles and robots. Existing approaches to detect OOD samples treat a DNN as a black box and assess the confidence score of the output predictions. Unfortunately, this method frequently fails, because DNN are not trained to reduce their confidence for OOD inputs. In this work, we introduce a novel method for OOD detection. Our method is motivated by theoretical analysis of neuron activation patterns (NAP) in ReLU based architectures. The proposed method does not introduce high computational workload due to the binary representation of the activation patterns extracted from convolutional layers. The extensive empirical evaluation proves its high performance on various DNN architectures and seven image datasets. ion.
translated by 谷歌翻译
可靠的评估方法对于构建强大的分布(OOD)检测器至关重要。OOD检测器的当前鲁棒性评估协议依赖于向数据注射扰动。但是,扰动不太可能自然发生或与数据内容无关,从而提供了有限的鲁棒性评估。在本文中,我们提出了对OOD检测器(EVG)的评估-VIA产生,这是一种新的协议,用于研究异常值变化模式下OOD检测器的鲁棒性。EVG利用生成模型合成合理的异常值,并采用MCMC采样来发现探测器最高置信度的分布式分类为分类。我们使用EVG对最先进的OOD检测器的性能进行了全面的基准比较,从而揭示了先前被忽视的弱点。
translated by 谷歌翻译
我们引入强大的想法,从超比计算到有挑战性领域的分布外(OOD)检测。与基于单个神经网络的单层执行的大多数现有的工作相比,我们使用相似性的半正交投影矩阵来将来自多个层的特征映射投影成公共矢量空间。通过反复应用捆绑操作$ \ oplus $,我们为所有分布类创建特定于特定于特定于特定的描述符向量。在测试时间时,描述符矢量之间的简单高效的余弦相似性计算一致地识别具有比当前最先进的性能更好的ood样本。我们表明,多维网络层的超级融合对于实现最佳的普遍表现至关重要。
translated by 谷歌翻译
异常检测方法识别偏离数据集的正常行为的样本。它通常用于训练集,其中包含来自多个标记类或单个未标记的类的普通数据。当前方法面对培训数据时争取多个类但没有标签。在这项工作中,我们首先发现自我监督的图像聚类方法学习的分类器为未标记的多级数据集上的异常检测提供了强大的基线。也许令人惊讶的是,我们发现初始化具有预先训练功能的聚类方法并不能改善其自我监督的对应物。这是由于灾难性遗忘的现象。相反,我们建议了两级方法。我们使用自我监督方法群集图像并为每个图像获取群集标签。我们使用群集标签作为“伪监督”,用于分销(OOD)方法。具体而言,我们通过群集标签对图像进行分类的任务进行预训练功能。我们提供了我们对方法的广泛分析,并展示了我们两级方法的必要性。我们评估符合最先进的自我监督和预用方法,并表现出卓越的性能。
translated by 谷歌翻译
在值得信赖的机器学习中,这是一个重要的问题,可以识别与分配任务无关的输入的分布(OOD)输入。近年来,已经提出了许多分布式检测方法。本文的目的是识别共同的目标以及确定不同OOD检测方法的隐式评分函数。我们专注于在培训期间使用替代OOD数据的方法,以学习在测试时概括为新的未见外部分布的OOD检测分数。我们表明,内部和(不同)外部分布之间的二元歧视等同于OOD检测问题的几种不同的公式。当与标准分类器以共同的方式接受培训时,该二进制判别器达到了类似于离群暴露的OOD检测性能。此外,我们表明,异常暴露所使用的置信损失具有隐式评分函数,在训练和测试外部分配相同的情况下,以非平凡的方式与理论上最佳评分功能有所不同,这又是类似于训练基于能量的OOD检测器或添加背景类时使用的一种。在实践中,当以完全相同的方式培训时,所有这些方法的性能类似。
translated by 谷歌翻译
已知现代深度神经网络模型将错误地将分布式(OOD)测试数据分类为具有很高信心的分数(ID)培训课程之一。这可能会对关键安全应用产生灾难性的后果。一种流行的缓解策略是训练单独的分类器,该分类器可以在测试时间检测此类OOD样本。在大多数实际设置中,在火车时间尚不清楚OOD的示例,因此,一个关键问题是:如何使用合成OOD样品来增加ID数据以训练这样的OOD检测器?在本文中,我们为称为CNC的OOD数据增强提出了一种新颖的复合腐败技术。 CNC的主要优点之一是,除了培训集外,它不需要任何固定数据。此外,与当前的最新技术(SOTA)技术不同,CNC不需要在测试时间进行反向传播或结合,从而使我们的方法在推断时更快。我们与过去4年中主要会议的20种方法进行了广泛的比较,表明,在OOD检测准确性和推理时间方面,使用基于CNC的数据增强训练的模型都胜过SOTA。我们包括详细的事后分析,以研究我们方法成功的原因,并确定CNC样本的较高相对熵和多样性是可能的原因。我们还通过对二维数据集进行零件分解分析提供理论见解,以揭示(视觉和定量),我们的方法导致ID类别周围的边界更紧密,从而更好地检测了OOD样品。源代码链接:https://github.com/cnc-ood
translated by 谷歌翻译
Out-of-distribution detection is crucial to the safe deployment of machine learning systems. Currently, the state-of-the-art in unsupervised out-of-distribution detection is dominated by generative-based approaches that make use of estimates of the likelihood or other measurements from a generative model. Reconstruction-based methods offer an alternative approach, in which a measure of reconstruction error is used to determine if a sample is out-of-distribution. However, reconstruction-based approaches are less favoured, as they require careful tuning of the model's information bottleneck - such as the size of the latent dimension - to produce good results. In this work, we exploit the view of denoising diffusion probabilistic models (DDPM) as denoising autoencoders where the bottleneck is controlled externally, by means of the amount of noise applied. We propose to use DDPMs to reconstruct an input that has been noised to a range of noise levels, and use the resulting multi-dimensional reconstruction error to classify out-of-distribution inputs. Our approach outperforms not only reconstruction-based methods, but also state-of-the-art generative-based approaches.
translated by 谷歌翻译
检测与培训数据偏离的测试数据是安全和健壮的机器学习的核心问题。通过生成模型学到的可能性,例如,通过标准对数似然训练的归一流流量,作为异常得分的表现不佳。我们建议使用未标记的辅助数据集和概率异常得分进行异常检测。我们使用在辅助数据集上训练的自我监督功能提取器,并通过最大程度地提高分布数据的可能性并最大程度地减少辅助数据集上的可能性来训练提取功能的正常化流程。我们表明,这等同于学习分布和辅助特征密度之间的归一化正差。我们在基准数据集上进行实验,并显示出与可能性,似然比方法和最新异常检测方法相比的强大改进。
translated by 谷歌翻译
在过去的几年中,关于分类,检测和分割问题的3D学习领域取得了重大进展。现有的绝大多数研究都集中在规范的封闭式条件上,忽略了现实世界的内在开放性。这限制了需要管理新颖和未知信号的自主系统的能力。在这种情况下,利用3D数据可以是有价值的资产,因为它传达了有关感应物体和场景几何形状的丰富信息。本文提供了关于开放式3D学习的首次广泛研究。我们介绍了一种新颖的测试床,其设置在类别语义转移方面的难度增加,并且涵盖了内域(合成之间)和跨域(合成对真实)场景。此外,我们研究了相关的分布情况,并开放了2D文献,以了解其最新方法是否以及如何在3D数据上有效。我们广泛的基准测试在同一连贯的图片中定位了几种算法,从而揭示了它们的优势和局限性。我们的分析结果可能是未来量身定制的开放式3D模型的可靠立足点。
translated by 谷歌翻译
Novelty detection, i.e., identifying whether a given sample is drawn from outside the training distribution, is essential for reliable machine learning. To this end, there have been many attempts at learning a representation well-suited for novelty detection and designing a score based on such representation. In this paper, we propose a simple, yet effective method named contrasting shifted instances (CSI), inspired by the recent success on contrastive learning of visual representations. Specifically, in addition to contrasting a given sample with other instances as in conventional contrastive learning methods, our training scheme contrasts the sample with distributionally-shifted augmentations of itself. Based on this, we propose a new detection score that is specific to the proposed training scheme. Our experiments demonstrate the superiority of our method under various novelty detection scenarios, including unlabeled one-class, unlabeled multi-class and labeled multi-class settings, with various image benchmark datasets. Code and pre-trained models are available at https://github.com/alinlab/CSI.
translated by 谷歌翻译
异常检测任务在AI安全中起着至关重要的作用。处理这项任务存在巨大的挑战。观察结果表明,深度神经网络分类器通常倾向于以高信心将分布(OOD)输入分为分配类别。现有的工作试图通过在培训期间向分类器暴露于分类器时明确对分类器施加不确定性来解决问题。在本文中,我们提出了一种替代概率范式,该范式实际上对OOD检测任务既有用,又可行。特别是,我们在培训过程中施加了近距离和离群数据之间的统计独立性,以确保inlier数据在培训期间向深度估计器显示有关OOD数据的信息很少。具体而言,我们通过Hilbert-Schmidt独立标准(HSIC)估算了Inlier和离群数据之间的统计依赖性,并在培训期间对此类度量进行了惩罚。我们还将方法与推理期间的新型统计测试相关联,加上我们的原则动机。经验结果表明,我们的方法对各种基准测试的OOD检测是有效且可靠的。与SOTA模型相比,我们的方法在FPR95,AUROC和AUPR指标方面取得了重大改进。代码可用:\ url {https://github.com/jylins/hone}。
translated by 谷歌翻译
深度异常检测已被证明是几个领域的有效和强大的方法。自我监督学习的引入极大地帮助了许多方法,包括异常检测,其中使用简单的几何变换识别任务。然而,由于它们缺乏更精细的特征,因此这些方法在细粒度问题上表现不佳,并且通常高度依赖于异常类型。在本文中,我们探讨了使用借口任务的自我监督异常检测的每个步骤。首先,我们介绍了专注于不同视觉线索的新型鉴别和生成任务。一部分拼图拼图任务侧重于结构提示,而在每个件上使用色调旋转识别进行比色法,并且执行部分重新染色任务。为了使重新着色任务更关注对象而不是在后台上关注,我们建议包括图像边界的上下文颜色信息。然后,我们介绍了一个新的分配检测功能,并与其他分配检测方法相比,突出了其更好的稳定性。随之而来,我们还试验不同的分数融合功能。最后,我们在具有经典对象识别的对象异常组成的综合异常检测协议上评估我们的方法,用细粒度分类和面部反欺骗数据集的局部分类和局部异常的样式异常。我们的模型可以更准确地学习使用这些自我监督任务的高度辨别功能。它优于最先进的最先进的相对误差改善对象异常,40%的面对反欺骗问题。
translated by 谷歌翻译