估计给定样品的吉布斯密度函数是计算统计和统计学习中的重要问题。尽管普遍使用了良好的最大似然法,但它需要计算分区函数(即密度的归一化)。可以轻松地针对简单的低维问题计算此功能,但是对于一般密度和高维问题,其计算很困难甚至是棘手的。在本文中,我们提出了一种基于最大a-posteriori(MAP)估计器的替代方法,我们命名了最大恢复地图(MR-MAP),以得出不需要计算分区功能的估计器,并将问题重新制定为优化问题。我们进一步提出了一种最小动作类型的潜力,使我们能够快速解决优化问题作为馈送屈曲神经网络。我们证明了我们的方法对某些标准数据集的有效性。
translated by 谷歌翻译
逆问题本质上是普遍存在的,几乎在科学和工程的几乎所有领域都出现,从地球物理学和气候科学到天体物理学和生物力学。解决反问题的核心挑战之一是解决他们的不良天性。贝叶斯推论提供了一种原则性的方法来克服这一方法,通过将逆问题提出为统计框架。但是,当推断具有大幅度的离散表示的字段(所谓的“维度的诅咒”)和/或仅以先前获取的解决方案的形式可用时。在这项工作中,我们提出了一种新的方法,可以使用深层生成模型进行有效,准确的贝叶斯反转。具体而言,我们证明了如何使用生成对抗网络(GAN)在贝叶斯更新中学到的近似分布,并在GAN的低维度潜在空间中重新解决所得的推断问题,从而有效地解决了大规模的解决方案。贝叶斯逆问题。我们的统计框架保留了潜在的物理学,并且被证明可以通过可靠的不确定性估计得出准确的结果,即使没有有关基础噪声模型的信息,这对于许多现有方法来说都是一个重大挑战。我们证明了提出方法对各种反问题的有效性,包括合成和实验观察到的数据。
translated by 谷歌翻译
近年来,深度学习在图像重建方面取得了显着的经验成功。这已经促进了对关键用例中数据驱动方法的正确性和可靠性的精确表征的持续追求,例如在医学成像中。尽管基于深度学习的方法具有出色的性能和功效,但对其稳定性或缺乏稳定性的关注以及严重的实际含义。近年来,已经取得了重大进展,以揭示数据驱动的图像恢复方法的内部运作,从而挑战了其广泛认为的黑盒本质。在本文中,我们将为数据驱动的图像重建指定相关的融合概念,该概念将构成具有数学上严格重建保证的学习方法调查的基础。强调的一个例子是ICNN的作用,提供了将深度学习的力量与经典凸正则化理论相结合的可能性,用于设计被证明是融合的方法。这篇调查文章旨在通过提供对数据驱动的图像重建方法以及从业人员的理解,旨在通过提供可访问的融合概念的描述,并通过将一些现有的经验实践放在可靠的数学上,来推进我们对数据驱动图像重建方法的理解以及从业人员的了解。基础。
translated by 谷歌翻译
远期操作员的计算成本和选择适当的先前分布的计算成本挑战了贝叶斯对高维逆问题的推断。摊销的变异推理解决了这些挑战,在这些挑战中,训练神经网络以近似于现有模型和数据对的后验分布。如果以前看不见的数据和正态分布的潜在样品作为输入,则预处理的深神经网络(在我们的情况下是有条件的正常化流量)几乎没有成本的后验样品。然而,这种方法的准确性取决于高保真训练数据的可用性,由于地球的异质结构,由于地球物理逆问题很少存在。此外,准确的摊销变异推断需要从训练数据分布中汲取观察到的数据。因此,我们建议通过基于物理学的校正对有条件的归一化流量分布来提高摊销变异推断的弹性。为了实现这一目标,我们不是标准的高斯潜在分布,我们通过具有未知平均值和对角线协方差的高斯分布来对潜在分布进行参数化。然后,通过最小化校正后分布和真实后验分布之间的kullback-leibler差异来估算这些未知数量。尽管通用和适用于其他反问题,但通过地震成像示例,我们表明我们的校正步骤可提高摊销变异推理的鲁棒性,以相对于源实验数量的变化,噪声方差以及先前分布的变化。这种方法提供了伪像有限的地震图像,并评估其不确定性,其成本大致与五个反度迁移相同。
translated by 谷歌翻译
我们引入了一种新的经验贝叶斯方法,用于大规模多线性回归。我们的方法结合了两个关键思想:(i)使用灵活的“自适应收缩”先验,该先验近似于正常分布的有限混合物,近似于正常分布的非参数家族; (ii)使用变分近似来有效估计先前的超参数并计算近似后期。将这两个想法结合起来,将快速,灵活的方法与计算速度相当,可与快速惩罚的回归方法(例如Lasso)相当,并在各种场景中具有出色的预测准确性。此外,我们表明,我们方法中的后验平均值可以解释为解决惩罚性回归问题,并通过直接解决优化问题(而不是通过交叉验证来调整)从数据中学到的惩罚函数的精确形式。 。我们的方法是在r https://github.com/stephenslab/mr.ash.ash.alpha的r软件包中实现的
translated by 谷歌翻译
本文介绍了一种基于Krnet(ADDA-KR)的自适应深度近似策略,用于求解稳态Fokker-Planck(F-P)方程。 F-P方程通常是高维度和在无限域上定义的,这限制了基于传统网格的数值方法的应用。通过Knothe-Rosenblatt重新排列,我们的新提出的基于流的生成模型称为KrNet,提供了一种概率密度函数的家族,以作为Fokker-Planck方程的有效解决方案候选者,这与传统的计算方法较弱的维度依赖性较弱并且可以有效地估计一般的高维密度函数。为了获得用于F-P方程的近似的有效随机搭配点,我们开发了一种自适应采样过程,其中使用每次迭代的近似密度函数来迭代地生成样本。我们介绍了ADDA-KR的一般框架,验证了其准确性并通过数值实验展示了其效率。
translated by 谷歌翻译
Normalizing flows provide a general mechanism for defining expressive probability distributions, only requiring the specification of a (usually simple) base distribution and a series of bijective transformations. There has been much recent work on normalizing flows, ranging from improving their expressive power to expanding their application. We believe the field has now matured and is in need of a unified perspective. In this review, we attempt to provide such a perspective by describing flows through the lens of probabilistic modeling and inference. We place special emphasis on the fundamental principles of flow design, and discuss foundational topics such as expressive power and computational trade-offs. We also broaden the conceptual framing of flows by relating them to more general probability transformations. Lastly, we summarize the use of flows for tasks such as generative modeling, approximate inference, and supervised learning.
translated by 谷歌翻译
现代深度学习方法构成了令人难以置信的强大工具,以解决无数的挑战问题。然而,由于深度学习方法作为黑匣子运作,因此与其预测相关的不确定性往往是挑战量化。贝叶斯统计数据提供了一种形式主义来理解和量化与深度神经网络预测相关的不确定性。本教程概述了相关文献和完整的工具集,用于设计,实施,列车,使用和评估贝叶斯神经网络,即使用贝叶斯方法培训的随机人工神经网络。
translated by 谷歌翻译
我们建议使用贝叶斯推理和深度神经网络的技术,将地震成像中的不确定性转化为图像上执行的任务的不确定性,例如地平线跟踪。地震成像是由于带宽和孔径限制,这是一个不良的逆问题,由于噪声和线性化误差的存在而受到阻碍。但是,许多正规化方法,例如变形域的稀疏性促进,已设计为处理这些错误的不利影响,但是,这些方法具有偏向解决方案的风险,并且不提供有关图像空间中不确定性的信息以及如何提供信息。不确定性会影响图像上的某些任务。提出了一种系统的方法,以将由于数据中的噪声引起的不确定性转化为图像中自动跟踪视野的置信区间。不确定性的特征是卷积神经网络(CNN)并评估这些不确定性,样品是从CNN权重的后验分布中得出的,用于参数化图像。与传统先验相比,文献中认为,这些CNN引入了灵活的感应偏见,这非常适合各种问题。随机梯度Langevin动力学的方法用于从后验分布中采样。该方法旨在处理大规模的贝叶斯推理问题,即具有地震成像中的计算昂贵的远期操作员。除了提供强大的替代方案外,最大的后验估计值容易过度拟合外,访问这些样品还可以使我们能够在数据中的噪声中转换图像中的不确定性,以便在跟踪的视野上不确定性。例如,它承认图像上的重点标准偏差和自动跟踪视野的置信区间的估计值。
translated by 谷歌翻译
我们考虑了使用显微镜或X射线散射技术产生的图像数据自组装的模型的贝叶斯校准。为了说明BCP平衡结构中的随机远程疾病,我们引入了辅助变量以表示这种不确定性。然而,这些变量导致了高维图像数据的综合可能性,通常可以评估。我们使用基于测量运输的可能性方法以及图像数据的摘要统计数据来解决这一具有挑战性的贝叶斯推理问题。我们还表明,可以计算出有关模型参数的数据中的预期信息收益(EIG),而无需额外的成本。最后,我们介绍了基于二嵌段共聚物薄膜自组装和自上而下显微镜表征的ohta-kawasaki模型的数值案例研究。为了进行校准,我们介绍了一些基于域的能量和傅立叶的摘要统计数据,并使用EIG量化了它们的信息性。我们证明了拟议方法研究数据损坏和实验设计对校准结果的影响的力量。
translated by 谷歌翻译
We develop an optimization algorithm suitable for Bayesian learning in complex models. Our approach relies on natural gradient updates within a general black-box framework for efficient training with limited model-specific derivations. It applies within the class of exponential-family variational posterior distributions, for which we extensively discuss the Gaussian case for which the updates have a rather simple form. Our Quasi Black-box Variational Inference (QBVI) framework is readily applicable to a wide class of Bayesian inference problems and is of simple implementation as the updates of the variational posterior do not involve gradients with respect to the model parameters, nor the prescription of the Fisher information matrix. We develop QBVI under different hypotheses for the posterior covariance matrix, discuss details about its robust and feasible implementation, and provide a number of real-world applications to demonstrate its effectiveness.
translated by 谷歌翻译
这项正在进行的工作旨在为统计学习提供统一的介绍,从诸如GMM和HMM等经典模型到现代神经网络(如VAE和扩散模型)缓慢地构建。如今,有许多互联网资源可以孤立地解释这一点或新的机器学习算法,但是它们并没有(也不能在如此简短的空间中)将这些算法彼此连接起来,或者与统计模型的经典文献相连现代算法出现了。同样明显缺乏的是一个单一的符号系统,尽管对那些已经熟悉材料的人(如这些帖子的作者)不满意,但对新手的入境造成了重大障碍。同样,我的目的是将各种模型(尽可能)吸收到一个用于推理和学习的框架上,表明(以及为什么)如何以最小的变化将一个模型更改为另一个模型(其中一些是新颖的,另一些是文献中的)。某些背景当然是必要的。我以为读者熟悉基本的多变量计算,概率和统计以及线性代数。这本书的目标当然不是​​完整性,而是从基本知识到过去十年中极强大的新模型的直线路径或多或少。然后,目标是补充而不是替换,诸如Bishop的\ emph {模式识别和机器学习}之类的综合文本,该文本现在已经15岁了。
translated by 谷歌翻译
变异推理(VI)的核心原理是将计算复杂后概率密度计算的统计推断问题转换为可拖动的优化问题。该属性使VI比几种基于采样的技术更快。但是,传统的VI算法无法扩展到大型数据集,并且无法轻易推断出越野数据点,而无需重新运行优化过程。该领域的最新发展,例如随机,黑框和摊销VI,已帮助解决了这些问题。如今,生成的建模任务广泛利用摊销VI来实现其效率和可扩展性,因为它利用参数化函数来学习近似的后验密度参数。在本文中,我们回顾了各种VI技术的数学基础,以构成理解摊销VI的基础。此外,我们还概述了最近解决摊销VI问题的趋势,例如摊销差距,泛化问题,不一致的表示学习和后验崩溃。最后,我们分析了改善VI优化的替代差异度量。
translated by 谷歌翻译
在这项工作中,我们已经提出了一种称为VAE-Krnet的生成模型,用于密度估计或近似,其将规范变形Autiachoder(VAE)与我们最近开发的基于流的生成模型相结合,称为Krnet。 VAE用作尺寸减少技术以捕获潜伏空间,并且Krnet用于模拟潜在变量的分布。在数据和潜在变量之间使用线性模型,我们表明VAE-Krnet可以比规范VAE更有效且鲁棒。 VAE-KRNET可以用作密度模型,以近似数据分布或任意概率密度函数(PDF)已知到常数。 VAE-KRNET在维度方面灵活。当尺寸的数量相对较小时,Krnet可以有效地近似于原始随机变量的分布。对于高维病例,我们可以使用VAE-Krnet合并尺寸减少。 VAE-Krnet的一个重要应用是用于后部分布的近似的变分贝叶。变分贝叶斯方法通常基于模型和后部之间的Kullback-Leibler(KL)发散的最小化。对于高尺寸分布,由于维度的诅咒构建精确的密度模型是非常具有挑战性的,其中通常引入额外的假设以效率。例如,经典平均场方法假设尺寸之间的相互独立性,这通常会导致由于过度简化而产生低估的方差。为了减轻这个问题,我们包括丢失潜在随机变量和原始随机变量之间的相互信息的最大化,这有助于从低密度的区域保持更多信息,使得方差估计得到改善。
translated by 谷歌翻译
The Bayesian approach to solving inverse problems relies on the choice of a prior. This critical ingredient allows the formulation of expert knowledge or physical constraints in a probabilistic fashion and plays an important role for the success of the inference. Recently, Bayesian inverse problems were solved using generative models as highly informative priors. Generative models are a popular tool in machine learning to generate data whose properties closely resemble those of a given database. Typically, the generated distribution of data is embedded in a low-dimensional manifold. For the inverse problem, a generative model is trained on a database that reflects the properties of the sought solution, such as typical structures of the tissue in the human brain in magnetic resonance (MR) imaging. The inference is carried out in the low-dimensional manifold determined by the generative model which strongly reduces the dimensionality of the inverse problem. However, this proceeding produces a posterior that admits no Lebesgue density in the actual variables and the accuracy reached can strongly depend on the quality of the generative model. For linear Gaussian models we explore an alternative Bayesian inference based on probabilistic generative models which is carried out in the original high-dimensional space. A Laplace approximation is employed to analytically derive the required prior probability density function induced by the generative model. Properties of the resulting inference are investigated. Specifically, we show that derived Bayes estimates are consistent, in contrast to the approach employing the low-dimensional manifold of the generative model. The MNIST data set is used to construct numerical experiments which confirm our theoretical findings.
translated by 谷歌翻译
本文提出了一种新的加速马尔可夫链蒙特卡洛(MCMC)方法,以在成像逆问题中有效地执行贝叶斯计算。所提出的方法源自兰格文扩散过程,并源于紧密整合两个最先进的近端Langevin MCMC采样器,SK-ROCK和SPLIST GIBBS采样(SGS),它们采用明显不同的策略来提高收敛速度。更确切地说,我们在Langevin扩散过程的水平上展示了如何集成基于随机的Runge-Kutta-chebyshev扩散的近端SK-ROCK采样器,该采样器具有模型增强和放松策略,可用于扩散以牺牲渐近偏差为代价加快贝叶斯计算的速度。这导致了一种新的,更快的近端SK-ROCK采样器,将原始SK-Rock采样器的加速质量与增强和放松的计算益处相结合。此外,我们建议将增强和放松的模型视为目标模型的近似值,而是将放松定位在偏见 - 差异权衡中,而是建议将增强和放松的模型视为目标模型的概括。然后,这使我们能够仔细校准放松量,以同时提高模型的准确性(通过模型证据衡量)和采样器的收敛速度。为了实现这一目标,我们得出了一种经验性的贝叶斯方法,可以通过最大的边际似然估计自动估计最佳的松弛量。通过与图像脱毛和内化相关的一系列数值实验,以及与艺术状态的替代方法进行比较,证明了所提出的方法。
translated by 谷歌翻译
我们考虑了从一个示例轨迹中学习$ dx_t = f(x_t)dt+sigma(x_t)dw_t $的形式的随机微分方程的问题。这个问题比学习确定性动力学系统更具挑战性,因为一个示例轨迹仅提供有关未知功能$ f $,$ \ sigma $的间接信息,而随机过程$ dw_t $代表漂移,扩散和随机强迫术语,强迫术语,,分别。我们为此问题提出了一个简单的基于内核的解决方案,可以分解如下:(1)表示时间添加映射$ x_t \ rightarrow x_ {t+dt} $作为计算图,其中$ f $,$ \ \ Sigma $和$ DW_T $作为未知功能和随机变量出现。 (2)通过在未知函数上使用高斯过程(GP)先验的最大后验估计(给定数据)来完成图(近似未知的函数和随机变量)。 (3)从具有随机交叉验证的数据中学习GP先验的协方差函数(内核)。数值实验说明了我们方法的功效,鲁棒性和范围。
translated by 谷歌翻译
We propose a simultaneous learning and pruning algorithm capable of identifying and eliminating irrelevant structures in a neural network during the early stages of training. Thus, the computational cost of subsequent training iterations, besides that of inference, is considerably reduced. Our method, based on variational inference principles using Gaussian scale mixture priors on neural network weights, learns the variational posterior distribution of Bernoulli random variables multiplying the units/filters similarly to adaptive dropout. Our algorithm, ensures that the Bernoulli parameters practically converge to either 0 or 1, establishing a deterministic final network. We analytically derive a novel hyper-prior distribution over the prior parameters that is crucial for their optimal selection and leads to consistent pruning levels and prediction accuracy regardless of weight initialization or the size of the starting network. We prove the convergence properties of our algorithm establishing theoretical and practical pruning conditions. We evaluate the proposed algorithm on the MNIST and CIFAR-10 data sets and the commonly used fully connected and convolutional LeNet and VGG16 architectures. The simulations show that our method achieves pruning levels on par with state-of the-art methods for structured pruning, while maintaining better test-accuracy and more importantly in a manner robust with respect to network initialization and initial size.
translated by 谷歌翻译
具有伽马超高提升的分层模型提供了一个灵活,稀疏的促销框架,用于桥接$ l ^ 1 $和$ l ^ 2 $ scalalizations在贝叶斯的配方中致正问题。尽管对这些模型具有贝叶斯动机,但现有的方法仅限于\ Textit {最大后验}估计。尚未实现执行不确定性量化的可能性。本文介绍了伽马超高图的分层逆问题的变分迭代交替方案。所提出的变分推理方法产生精确的重建,提供有意义的不确定性量化,易于实施。此外,它自然地引入了用于选择超参数的模型选择。我们说明了我们在几个计算的示例中的方法的性能,包括从时间序列数据的动态系统的解卷积问题和稀疏识别。
translated by 谷歌翻译
从卫星图像中提取的大气运动向量(AMV)是唯一具有良好全球覆盖范围的风观测。它们是进食数值天气预测(NWP)模型的重要特征。已经提出了几种贝叶斯模型来估计AMV。尽管对于正确同化NWP模型至关重要,但很少有方法可以彻底表征估计误差。估计误差的困难源于后验分布的特异性,这既是很高的维度,又是由于奇异的可能性而导致高度不良的条件,这在缺少数据(未观察到的像素)的情况下特别重要。这项工作研究了使用基于梯度的Markov链Monte Carlo(MCMC)算法评估AMV的预期误差。我们的主要贡献是提出一种回火策略,这相当于在点估计值附近的AMV和图像变量的联合后验分布的局部近似。此外,我们提供了与先前家庭本身有关的协方差(分数布朗运动),并具有不同的超参数。从理论的角度来看,我们表明,在规律性假设下,随着温度降低到{optimal}高斯近似值,在最大a后验(MAP)对数密度给出的点估计下,温度降低到{optimal}高斯近似值。从经验的角度来看,我们根据一些定量的贝叶斯评估标准评估了提出的方法。我们对合成和真实气象数据进行的数值模拟揭示了AMV点估计的准确性及其相关的预期误差估计值的显着提高,但在MCMC算法的收敛速度方面也有很大的加速度。
translated by 谷歌翻译