Motivated by the increasing application of low-resolution LiDAR recently, we target the problem of low-resolution LiDAR-camera calibration in this work. The main challenges are two-fold: sparsity and noise in point clouds. To address the problem, we propose to apply depth interpolation to increase the point density and supervised contrastive learning to learn noise-resistant features. The experiments on RELLIS-3D demonstrate that our approach achieves an average mean absolute rotation/translation errors of 0.15cm/0.33\textdegree on 32-channel LiDAR point cloud data, which significantly outperforms all reference methods.
translated by 谷歌翻译
准确可靠的传感器校准对于在自主驾驶中融合激光雷达和惯性测量至关重要。本文提出了一种新型的3D-LIDAR和姿势传感器的新型三阶段外部校准方法,用于自主驾驶。第一阶段可以通过点云表面特征快速校准传感器之间的外部参数,以便可以将外部参数从大的初始误差范围缩小到很小的时间范围。第二阶段可以基于激光映射空间占用率进一步校准外部参数,同时消除运动失真。在最后阶段,校正了由自动驾驶汽车的平面运动引起的Z轴误差,并最终获得了精确的外部参数。具体而言,该方法利用了道路场景的自然特征,使其独立且易于在大规模条件下应用。现实世界数据集的实验结果证明了我们方法的可靠性和准确性。这些代码是在GitHub网站上开源的。据我们所知,这是第一个专门为自动驾驶设计的开源代码,用于校准激光雷达和姿势传感器外部参数。代码链接是https://github.com/opencalib/lidar2ins。
translated by 谷歌翻译
语义细分是农业机器人了解自然果园周围环境的一项基本任务。 LIDAR技术的最新发展使机器人能够在非结构化果园中获得准确的范围测量。与RGB图像相比,3D点云具有几何特性。通过将LIDAR和相机组合在一起,可以获得有关几何和纹理的丰富信息。在这项工作中,我们提出了一种基于深度学习的分割方法,以对来自激光镜像相机视觉传感器的融合数据进行准确的语义分割。在这项工作中探索和解决了两个关键问题。第一个是如何有效地从多传感器数据中融合纹理和几何特征。第二个是如何在严重失衡类条件下有效训练3D分割网络的方法。此外,详细介绍了果园中3D分割的实现,包括LiDAR-CAMERA数据融合,数据收集和标签,网络培训和模型推断。在实验中,我们在处理从苹果园获得的高度非结构化和嘈杂的点云时,全面分析了网络设置。总体而言,我们提出的方法在高分辨率点云(100k-200k点)上的水果分割时达到了86.2%MIOU。实验结果表明,所提出的方法可以在真实的果园环境中进行准确的分割。
translated by 谷歌翻译
虽然相机和激光雷达在大多数辅助和自主驾驶系统中广泛使用,但仅提出了少数作品来将用于在线传感器数据融合的摄像机和镜头的时间同步和外部校准相关联。时间和空间校准技术正面临缺乏相关性和实时的挑战。在本文中,我们介绍了姿势估计模型和环境鲁棒线的提取,以提高数据融合和即时在线校正能力的相关性。考虑到相邻力矩之间的点云匹配的对应关系,动态目标旨在寻求最佳政策。搜索优化过程旨在以计算精度和效率提供准确的参数。为了证明这种方法的好处,我们以基础真实价值在基蒂基准上进行评估。在在线实验中,与时间校准中的软同步方法相比,我们的方法提高了准确性38.5%。在空间校准时,我们的方法会在0.4秒内自动纠正干扰误差,并达到0.3度的精度。这项工作可以促进传感器融合的研究和应用。
translated by 谷歌翻译
本文首先提出了一个有效的3D点云学习架构,名为PWCLO-NET的LIDAR ODOMORY。在该架构中,提出了3D点云的投影感知表示来将原始的3D点云组织成有序数据表单以实现效率。 LIDAR ODOMOMERY任务的金字塔,翘曲和成本量(PWC)结构是为估计和优化在分层和高效的粗良好方法中的姿势。建立一个投影感知的细心成本卷,以直接关联两个离散点云并获得嵌入运动模式。然后,提出了一种可训练的嵌入掩模来称量局部运动模式以回归整体姿势和过滤异常值点。可训练的姿势经线细化模块迭代地与嵌入式掩码进行分层优化,使姿势估计对异常值更加强大。整个架构是全能优化的端到端,实现成本和掩码的自适应学习,并且涉及点云采样和分组的所有操作都是通过投影感知的3D特征学习方法加速。在Kitti Ocomatry DataSet上证明了我们的激光乐队内径架构的卓越性能和有效性。我们的方法优于基于学习的所有基于学习的方法,甚至基于几何的方法,在大多数基于Kitti Odomatry数据集的序列上具有映射优化的遗传。
translated by 谷歌翻译
基于传感器的环境感知是自主驾驶系统的关键步骤,多个传感器之间的准确校准起着至关重要的作用。为了校准激光雷达和相机,现有方法通常是先校准相机的固有,然后校准激光雷达和相机的外部。如果在第一阶段无法正确校准摄像机的固有效果,则可以准确地校准激光镜相机外部校准并不容易。由于相机的复杂内部结构以及缺乏对摄像机内在校准的有效定量评估方法,因此在实际校准中,由于摄像机内在参数的微小误差,外部参数校准的准确性通常会降低。为此,我们提出了一种新型的基于目标的关节校准方法,用于摄像机内在和激光摄像机外部参数。首先,我们设计了一个新颖的校准板图案,在棋盘上增加了四个圆形孔,以定位激光姿势。随后,在棋盘板的再投影约束和圆形孔特征下定义的成本函数旨在求解相机的内在参数,失真因子和激光相机外部外部参数。最后,定量和定性实验是在实际和模拟环境中进行的,结果表明该方法可以达到准确性和鲁棒性能。开源代码可在https://github.com/opencalib/jointcalib上获得。
translated by 谷歌翻译
在现有方法中,LIDAR的探测器显示出卓越的性能,但视觉探测器仍被广泛用于其价格优势。从惯例上讲,视觉检验的任务主要依赖于连续图像的输入。但是,探测器网络学习图像提供的异性几何信息非常复杂。在本文中,将伪LIDAR的概念引入了探测器中以解决此问题。伪LIDAR点云背面项目由图像生成的深度图中的3D点云,这改变了图像表示的方式。与立体声图像相比,立体声匹配网络生成的伪lidar点云可以得到显式的3D坐标。由于在3D空间中发生了6个自由度(DOF)姿势转换,因此伪宽点云提供的3D结构信息比图像更直接。与稀疏的激光雷达相比,伪驱动器具有较密集的点云。为了充分利用伪LIDAR提供的丰富点云信息,采用了投射感知的探测管道。以前的大多数基于激光雷达的算法从点云中采样了8192点,作为探视网络的输入。投影感知的密集探测管道采用从图像产生的所有伪lidar点云,除了误差点作为网络的输入。在图像中充分利用3D几何信息时,图像中的语义信息也用于探视任务中。 2D-3D的融合是在仅基于图像的进程中实现的。 Kitti数据集的实验证明了我们方法的有效性。据我们所知,这是使用伪LIDAR的第一种视觉探光法。
translated by 谷歌翻译
有了来自多个输入模式的信息,基于传感器融合的算法通常在机器人技术中表现出其单模式的表现。带有互补语义和深度信息的相机和激光镜头是复杂驾驶环境中检测任务的典型选择。但是,对于大多数摄像头融合算法,传感器套件的校准将极大地影响性能。更具体地说,检测算法通常需要多个传感器之间的准确几何关系作为输入,并且通常假定这些传感器的内容是同时捕获的。准备此类传感器套件涉及精心设计的校准钻机和准确的同步机制,并且制备过程通常是离线进行的。在这项工作中,提出了一个基于分割的框架,以共同估计摄像机套件校准中的几何和时间参数。首先将语义分割掩码应用于传感器模式,并通过像素双向损失优化校准参数。我们专门合并了来自光流的速度信息,以进行时间参数。由于仅在分割级别进行监督,因此在框架内不需要校准标签。提出的算法在KITTI数据集上进行了测试,结果显示了几何和时间参数的准确实时校准。
translated by 谷歌翻译
基于LIDAR的传感驱动器电流自主车辆。尽管进展迅速,但目前的激光雷达传感器在分辨率和成本方面仍然落后于传统彩色相机背后的二十年。对于自主驾驶,这意味着靠近传感器的大物体很容易可见,但远方或小物体仅包括一个测量或两个。这是一个问题,尤其是当这些对象结果驾驶危险时。另一方面,在车载RGB传感器中清晰可见这些相同的对象。在这项工作中,我们提出了一种将RGB传感器无缝熔化成基于LIDAR的3D识别方法。我们的方法采用一组2D检测来生成密集的3D虚拟点,以增加否则稀疏的3D点云。这些虚拟点自然地集成到任何基于标准的LIDAR的3D探测器以及常规激光雷达测量。由此产生的多模态检测器简单且有效。大规模NUSCENES数据集的实验结果表明,我们的框架通过显着的6.6地图改善了强大的中心点基线,并且优于竞争融合方法。代码和更多可视化可在https://tianweiy.github.io/mvp/上获得
translated by 谷歌翻译
配对点云之间的低空区域使被捕获的特征非常自信,导致尖端模型以质量较差的云登记。除了传统的智慧之外,我们还提出了一个有趣的问题:是否有可能在两个低重叠点云之间利用中间却又错位的图像来增强尖端注册模型的性能?为了回答它,我们提出了一个被称为Imlovenet的低重叠点云对的未对准图像支持的注册网络。 Imlovenet首先学习跨不同模态的三重深特征,然后将这些特征导出到两个阶段分类器中,以逐步获得两个点云之间的高信心重叠区域。因此,软对应关系在预测的重叠区域中得到了很好的确定,从而导致了准确的刚性转换。 Imlovenet易于实现,但有效,因为1)未对准的图像为两个低重叠点云提供了更清晰的重叠信息,以更好地定位重叠零件; 2)它包含某些几何知识,以提取更好的深度特征; 3)它不需要成像设备的外部参数,相对于3D点云的参考框架。对各种基准的广泛定性和定量评估证明了我们的iMlovenet比最新方法的有效性和优越性。
translated by 谷歌翻译
在本文中,我们介绍了一种新的端到端学习的LIDAR重新定位框架,被称为Pointloc,其仅使用单点云直接姿势作为输入,不需要预先构建的地图。与RGB基于图像的重建化相比,LIDAR帧可以提供有关场景的丰富和强大的几何信息。然而,LIDAR点云是无序的并且非结构化,使得难以为此任务应用传统的深度学习回归模型。我们通过提出一种具有自我关注的小说点风格架构来解决这个问题,从而有效地估计660 {\ DEG} LIDAR输入框架的6-DOF姿势。关于最近发布的巨大恐怖雷达机器人数据集和现实世界机器人实验的扩展实验表明ProposedMethod可以实现准确的重定位化性能。
translated by 谷歌翻译
准确的轨道位置是铁路支持驱动系统的重要组成部分,用于安全监控。激光雷达可以获得携带铁路环境的3D信息的点云,特别是在黑暗和可怕的天气条件下。在本文中,提出了一种基于3D点云的实时轨识别方法来解决挑战,如无序,不均匀的密度和大量点云的挑战。首先呈现Voxel Down-采样方法,用于铁路点云的密度平衡,并且金字塔分区旨在将3D扫描区域划分为具有不同卷的体素。然后,开发了一个特征编码模块以找到最近的邻点并聚合它们的局部几何特征。最后,提出了一种多尺度神经网络以产生每个体素和轨道位置的预测结果。该实验是在铁路的3D点云数据的9个序列下进行的。结果表明,该方法在检测直,弯曲和其他复杂的拓扑轨道方面具有良好的性能。
translated by 谷歌翻译
毫米波(mmwave)雷达在不利的环境中起作用,例如在烟,雨,雪,照明等不良环境中起作用。先前的工作探索了从嘈杂且稀疏的MMWAVE雷达信号中重建3D骨骼或网格的可能性。但是,目前尚不清楚我们如何准确地从跨场景的MMWave信号重建3D主体,以及与摄像机相比的性能,当单独使用MMWave雷达或将它们与摄像机结合时,这是需要考虑的重要方面。为了回答这些问题,首先设计并构建了多个传感器,以收集大规模数据集。该数据集由在不同场景中的同步和校准的MMWave雷达点云和RGB(D)图像组成,以及在场景中人类的骨架/网格注释。使用此数据集,我们使用来自不同传感器的输入来训练最先进的方法,并在各种情况下对其进行测试。结果表明,1)尽管生成点云的噪音和稀疏性,MMWave雷达可以比RGB摄像机获得更好的重建精度,但比深度摄像头还差; 2)MMWave雷达的重建受不利天气条件的影响,而RGB(D)摄像机受到严重影响。此外,对数据集的分析和结果对改善MMWave雷达重建的重建以及来自不同传感器的信号的组合的洞察力。
translated by 谷歌翻译
Depth estimation is usually ill-posed and ambiguous for monocular camera-based 3D multi-person pose estimation. Since LiDAR can capture accurate depth information in long-range scenes, it can benefit both the global localization of individuals and the 3D pose estimation by providing rich geometry features. Motivated by this, we propose a monocular camera and single LiDAR-based method for 3D multi-person pose estimation in large-scale scenes, which is easy to deploy and insensitive to light. Specifically, we design an effective fusion strategy to take advantage of multi-modal input data, including images and point cloud, and make full use of temporal information to guide the network to learn natural and coherent human motions. Without relying on any 3D pose annotations, our method exploits the inherent geometry constraints of point cloud for self-supervision and utilizes 2D keypoints on images for weak supervision. Extensive experiments on public datasets and our newly collected dataset demonstrate the superiority and generalization capability of our proposed method.
translated by 谷歌翻译
单眼相机传感器对于智能车辆操作和自动驾驶帮助至关重要,并且在交通控制基础设施中也很大程度上使用。但是,校准单眼摄像机很耗时,通常需要大量的手动干预。在这项工作中,我们提出了一种外部摄像机校准方法,该方法通过利用来自图像和点云的语义分割信息来自动化参数估计。我们的方法依赖于对摄像头姿势的粗略初始测量,并建立在具有高精度定位的车辆上的雷达传感器上,以捕获相机环境的点云。之后,通过执行语义分段传感器数据的激光镜头到相机的注册来获得相机和世界坐标空间之间的映射。我们在模拟和现实世界中评估了我们的方法,以证明校准结果中的低误差测量值。我们的方法适用于基础设施传感器和车辆传感器,而它不需要摄像机平台的运动。
translated by 谷歌翻译
近年来,在各种环境中,在城市道路,大型建筑物等各种环境中越来越多的应用,以及室内和户外场所。然而,由于不同传感器的局限性和环境的外观变化,这项任务仍然仍然具有挑战性。目前的作用仅考虑使用各个传感器,或者只是结合不同的传感器,忽略不同传感器的重要性随着环境变化而变化的事实。本文提出了一种名为Adafusion的自适应加权视觉激光融合方法,以了解图像和点云特征的权重。因此,这两个模式的特征根据当前的环境情况不同地贡献。通过网络的注意分支实现权重的学习,然后与多模态特征提取分支融合。此外,为了更好地利用图像和点云之间的潜在关系,我们设计一个突变融合方法来组合2D和3D关注。我们的工作在两个公共数据集上进行了测试,实验表明,自适应权重有助于提高识别准确性和系统鲁棒性与不同的环境。
translated by 谷歌翻译
多模式传感器的融合在自动驾驶和智能机器人中变得越来越流行,因为它可以比任何单个传感器提供更丰富的信息,从而在复杂的环境中增强可靠性。多传感器外部校准是传感器融合的关键因素之一。但是,由于传感器方式的种类以及对校准目标和人工的需求,这种校准很困难。在本文中,我们通过关注立体相机,热摄像机和激光传感器之间的外部转换,展示了一个新的无目标跨模式校准框架。具体而言,立体声和激光器之间的校准是通过最小化登记误差在3D空间中进行的,而通过优化边缘特征的对齐方式来估计其他两个传感器的热外部传感器。我们的方法不需要专门的目标,并且可以在没有人类相互作用的情况下进行一次镜头进行多传感器校准。实验结果表明,校准框架是准确且适用于一般场景的。
translated by 谷歌翻译
图像和点云为机器人提供了不同的信息。从不同传感器中找到数据之间的对应关系对于各种任务,例如本地化,映射和导航至关重要。基于学习的描述符已为单个传感器开发;跨模式功能几乎没有工作。这项工作将学习跨模式特征视为一个密集的对比度学习问题。我们为跨模式特征学习提出了元组圆损失函数。此外,为了学习良好的功能而不是失去普遍性,我们开发了用于点云和U-NET CNN体系结构的广泛使用的PointNet ++架构的变体。此外,我们在现实世界数据集上进行实验,以显示损失函数和网络结构的有效性。我们表明,我们的模型确实通过可视化功能从图像和激光雷达学习信息。
translated by 谷歌翻译
The past few years have witnessed the prevalence of self-supervised representation learning within the language and 2D vision communities. However, such advancements have not been fully migrated to the community of 3D point cloud learning. Different from previous pre-training pipelines for 3D point clouds that generally fall into the scope of either generative modeling or contrastive learning, in this paper, we investigate a translative pre-training paradigm, namely PointVST, driven by a novel self-supervised pretext task of cross-modal translation from an input 3D object point cloud to its diverse forms of 2D rendered images (e.g., silhouette, depth, contour). Specifically, we begin with deducing view-conditioned point-wise embeddings via the insertion of the viewpoint indicator, and then adaptively aggregate a view-specific global codeword, which is further fed into the subsequent 2D convolutional translation heads for image generation. We conduct extensive experiments on common task scenarios of 3D shape analysis, where our PointVST shows consistent and prominent performance superiority over current state-of-the-art methods under diverse evaluation protocols. Our code will be made publicly available.
translated by 谷歌翻译
轻巧的飞行时间(TOF)深度传感器很小,便宜,低能量,并且已在移动设备上大量部署在移动设备上,以进行自动对焦,障碍物检测等。但是,由于其特定的测量值(深度分布)在某个像素时的区域而不是深度值,并且分辨率极低,它们不足以用于需要高保真深度(例如3D重建)的应用。在本文中,我们提出了Deltar,这是一种新颖的方法,可以通过与颜色图像合作来赋予高分辨率和准确深度的能力。作为Deltar的核心,提出了一种用于深度分布的特征提取器,并提出了基于注意力的神经体系结构,以有效地从颜色和TOF域中融合信息。为了在现实世界中评估我们的系统,我们设计了一个数据收集设备,并提出了一种校准RGB摄像头和TOF传感器的新方法。实验表明,我们的方法比旨在使用商品级RGB-D传感器的PAR性能实现的现有框架比现有的框架产生更准确的深度。代码和数据可在https://zju3dv.github.io/deltar/上获得。
translated by 谷歌翻译