语义细分是农业机器人了解自然果园周围环境的一项基本任务。 LIDAR技术的最新发展使机器人能够在非结构化果园中获得准确的范围测量。与RGB图像相比,3D点云具有几何特性。通过将LIDAR和相机组合在一起,可以获得有关几何和纹理的丰富信息。在这项工作中,我们提出了一种基于深度学习的分割方法,以对来自激光镜像相机视觉传感器的融合数据进行准确的语义分割。在这项工作中探索和解决了两个关键问题。第一个是如何有效地从多传感器数据中融合纹理和几何特征。第二个是如何在严重失衡类条件下有效训练3D分割网络的方法。此外,详细介绍了果园中3D分割的实现,包括LiDAR-CAMERA数据融合,数据收集和标签,网络培训和模型推断。在实验中,我们在处理从苹果园获得的高度非结构化和嘈杂的点云时,全面分析了网络设置。总体而言,我们提出的方法在高分辨率点云(100k-200k点)上的水果分割时达到了86.2%MIOU。实验结果表明,所提出的方法可以在真实的果园环境中进行准确的分割。
translated by 谷歌翻译
许多基于点的语义分割方法是为室内场景设计的,但如果它们被应用于户外环境中的LIDAR传感器捕获的点云,则他们挣扎。为了使这些方法更有效和坚固,使得它们可以处理LIDAR数据,我们介绍了重新建立基于3D点的操作的一般概念,使得它们可以在投影空间中运行。虽然我们通过三个基于点的方法显示了重新计算的版本速度快300到400倍,但实现了更高的准确性,但我们还证明了重新制定基于3D点的操作的概念允许设计统一益处的新架构基于点和基于图像的方法。作为示例,我们介绍一种网络,该网络将基于重新的3D点的操作集成到2D编码器 - 解码器架构中,该架构融合来自不同2D尺度的信息。我们评估了四个具有挑战性的语义LIDAR点云分割的方法,并显示利用基于2D图像的操作的重新推出的基于3D点的操作实现了所有四个数据集的非常好的结果。
translated by 谷歌翻译
大规模发光点云的快速有效语义分割是自主驾驶中的一个基本问题。为了实现这一目标,现有的基于点的方法主要选择采用随机抽样策略来处理大规模点云。但是,我们的数量和定性研究发现,随机抽样可能不适合自主驾驶场景,因为LiDAR点遵循整个空间的不均匀甚至长尾巴分布,这阻止了模型从从中捕获足够的信息,从而从中捕获了足够的信息不同的距离范围并降低了模型的学习能力。为了减轻这个问题,我们提出了一种新的极性缸平衡的随机抽样方法,该方法使下采样的点云能够保持更平衡的分布并改善不同空间分布下的分割性能。此外,引入了采样一致性损失,以进一步提高分割性能并降低模型在不同采样方法下的方差。广泛的实验证实,我们的方法在Semantickitti和Semanticposs基准测试中都产生了出色的性能,分别提高了2.8%和4.0%。
translated by 谷歌翻译
随着激光雷达传感器和3D视觉摄像头的扩散,3D点云分析近年来引起了重大关注。经过先驱工作点的成功后,基于深度学习的方法越来越多地应用于各种任务,包括3D点云分段和3D对象分类。在本文中,我们提出了一种新颖的3D点云学习网络,通过选择性地执行具有动态池的邻域特征聚合和注意机制来提出作为动态点特征聚合网络(DPFA-NET)。 DPFA-Net有两个可用于三维云的语义分割和分类的变体。作为DPFA-NET的核心模块,我们提出了一个特征聚合层,其中每个点的动态邻域的特征通过自我注意机制聚合。与其他分割模型相比,来自固定邻域的聚合特征,我们的方法可以在不同层中聚合来自不同邻居的特征,在不同层中为查询点提供更具选择性和更广泛的视图,并更多地关注本地邻域中的相关特征。此外,为了进一步提高所提出的语义分割模型的性能,我们提出了两种新方法,即两级BF-Net和BF-Rengralization来利用背景前台信息。实验结果表明,所提出的DPFA-Net在S3DIS数据集上实现了最先进的整体精度分数,在S3DIS数据集上进行了语义分割,并在不同的语义分割,部分分割和3D对象分类中提供始终如一的令人满意的性能。与其他方法相比,它也在计算上更有效。
translated by 谷歌翻译
Raw point clouds data inevitably contains outliers or noise through acquisition from 3D sensors or reconstruction algorithms. In this paper, we present a novel endto-end network for robust point clouds processing, named PointASNL, which can deal with point clouds with noise effectively. The key component in our approach is the adaptive sampling (AS) module. It first re-weights the neighbors around the initial sampled points from farthest point sampling (FPS), and then adaptively adjusts the sampled points beyond the entire point cloud. Our AS module can not only benefit the feature learning of point clouds, but also ease the biased effect of outliers. To further capture the neighbor and long-range dependencies of the sampled point, we proposed a local-nonlocal (L-NL) module inspired by the nonlocal operation. Such L-NL module enables the learning process insensitive to noise. Extensive experiments verify the robustness and superiority of our approach in point clouds processing tasks regardless of synthesis data, indoor data, and outdoor data with or without noise. Specifically, PointASNL achieves state-of-theart robust performance for classification and segmentation tasks on all datasets, and significantly outperforms previous methods on real-world outdoor SemanticKITTI dataset with considerate noise. Our code is released through https: //github.com/yanx27/PointASNL.
translated by 谷歌翻译
准确的轨道位置是铁路支持驱动系统的重要组成部分,用于安全监控。激光雷达可以获得携带铁路环境的3D信息的点云,特别是在黑暗和可怕的天气条件下。在本文中,提出了一种基于3D点云的实时轨识别方法来解决挑战,如无序,不均匀的密度和大量点云的挑战。首先呈现Voxel Down-采样方法,用于铁路点云的密度平衡,并且金字塔分区旨在将3D扫描区域划分为具有不同卷的体素。然后,开发了一个特征编码模块以找到最近的邻点并聚合它们的局部几何特征。最后,提出了一种多尺度神经网络以产生每个体素和轨道位置的预测结果。该实验是在铁路的3D点云数据的9个序列下进行的。结果表明,该方法在检测直,弯曲和其他复杂的拓扑轨道方面具有良好的性能。
translated by 谷歌翻译
Point cloud learning has lately attracted increasing attention due to its wide applications in many areas, such as computer vision, autonomous driving, and robotics. As a dominating technique in AI, deep learning has been successfully used to solve various 2D vision problems. However, deep learning on point clouds is still in its infancy due to the unique challenges faced by the processing of point clouds with deep neural networks. Recently, deep learning on point clouds has become even thriving, with numerous methods being proposed to address different problems in this area. To stimulate future research, this paper presents a comprehensive review of recent progress in deep learning methods for point clouds. It covers three major tasks, including 3D shape classification, 3D object detection and tracking, and 3D point cloud segmentation. It also presents comparative results on several publicly available datasets, together with insightful observations and inspiring future research directions.
translated by 谷歌翻译
现场机器人收获是农业产业近期发展的有希望的技术。在自然果园收获之前,机器人识别和本地化水果至关重要。然而,果园中收获机器人的工作空间很复杂:许多水果被分支和叶子堵塞。在执行操纵之前,估计每个果实的适当抓握姿势是很重要的。在本研究中,建议使用来自RGB-D相机的颜色和几何感官数据来执行端到端实例分段和掌握估计的几何意识网络A3N。此外,应用了工作区几何建模以帮助机器人操纵。此外,我们实施全球到本地扫描策略,它使机器人能够在具有两个消费级RGB-D相机中准确地识别和检索现场环境中的水果。我们还全面评估了所提出的网络的准确性和鲁棒性。实验结果表明,A3N达到了0.873的实例分割精度,平均计算时间为35毫秒。掌握估计的平均准确性分别为0.61厘米,4.8美元,中心和方向分别为4.8美元。总的来说,利用全球到局部扫描和A3N的机器人系统实现了从现场收集实验中的70 \%-85 \%的收获量的成功率。
translated by 谷歌翻译
在本文中,我们提出了一个全面的点云语义分割网络,该网络汇总了本地和全球多尺度信息。首先,我们提出一个角度相关点卷积(ACPCONV)模块,以有效地了解点的局部形状。其次,基于ACPCONV,我们引入了局部多规模拆分(MSS)块,该块从一个单个块中连接到一个单个块中的特征,并逐渐扩大了接受场,这对利用本地上下文是有益的。第三,受HRNET的启发,在2D图像视觉任务上具有出色的性能,我们构建了一个针对Point Cloud的HRNET,以学习全局多尺度上下文。最后,我们介绍了一种融合多分辨率预测并进一步改善点云语义分割性能的点上的注意融合方法。我们在几个基准数据集上的实验结果和消融表明,与现有方法相比,我们提出的方法有效,能够实现最先进的性能。
translated by 谷歌翻译
在本文中,我们介绍了一种新的端到端学习的LIDAR重新定位框架,被称为Pointloc,其仅使用单点云直接姿势作为输入,不需要预先构建的地图。与RGB基于图像的重建化相比,LIDAR帧可以提供有关场景的丰富和强大的几何信息。然而,LIDAR点云是无序的并且非结构化,使得难以为此任务应用传统的深度学习回归模型。我们通过提出一种具有自我关注的小说点风格架构来解决这个问题,从而有效地估计660 {\ DEG} LIDAR输入框架的6-DOF姿势。关于最近发布的巨大恐怖雷达机器人数据集和现实世界机器人实验的扩展实验表明ProposedMethod可以实现准确的重定位化性能。
translated by 谷歌翻译
3D point clouds are rich in geometric structure information, while 2D images contain important and continuous texture information. Combining 2D information to achieve better 3D semantic segmentation has become mainstream in 3D scene understanding. Albeit the success, it still remains elusive how to fuse and process the cross-dimensional features from these two distinct spaces. Existing state-of-the-art usually exploit bidirectional projection methods to align the cross-dimensional features and realize both 2D & 3D semantic segmentation tasks. However, to enable bidirectional mapping, this framework often requires a symmetrical 2D-3D network structure, thus limiting the network's flexibility. Meanwhile, such dual-task settings may distract the network easily and lead to over-fitting in the 3D segmentation task. As limited by the network's inflexibility, fused features can only pass through a decoder network, which affects model performance due to insufficient depth. To alleviate these drawbacks, in this paper, we argue that despite its simplicity, projecting unidirectionally multi-view 2D deep semantic features into the 3D space aligned with 3D deep semantic features could lead to better feature fusion. On the one hand, the unidirectional projection enforces our model focused more on the core task, i.e., 3D segmentation; on the other hand, unlocking the bidirectional to unidirectional projection enables a deeper cross-domain semantic alignment and enjoys the flexibility to fuse better and complicated features from very different spaces. In joint 2D-3D approaches, our proposed method achieves superior performance on the ScanNetv2 benchmark for 3D semantic segmentation.
translated by 谷歌翻译
随着相机和激光雷达传感器捕获用于自主驾驶的互补信息,已经做出了巨大的努力,通过多模式数据融合来开发语义分割算法。但是,基于融合的方法需要配对的数据,即具有严格的点对像素映射的激光点云和相机图像,因为培训和推理的输入都严重阻碍了在实际情况下的应用。因此,在这项工作中,我们建议通过充分利用具有丰富外观的2D图像来提高对点云上的代表性学习的2D先验辅助语义分割(2DPass),以增强对点云的表示。实际上,通过利用辅助模态融合和多尺度融合到单个知识蒸馏(MSFSKD),2DAPS从多模式数据中获取更丰富的语义和结构信息,然后在线蒸馏到纯3D网络。结果,配备了2DAPS,我们的基线仅使用点云输入显示出显着的改进。具体而言,它在两个大规模的基准(即Semantickitti和Nuscenes)上实现了最先进的方法,其中包括TOP-1的semantickitti的单扫描和多次扫描竞赛。
translated by 谷歌翻译
准确而快速的场景理解是自动驾驶的挑战性任务之一,它需要充分利用LiDar Point云进行语义细分。在本文中,我们提出了一个\ textbf {concise}和\ textbf {有效}基于图像的语义分割网络,名为\ textbf {cenet}。为了提高学习能力的描述能力并降低计算和时间复杂性,我们的CENET将卷积与较大的内核大小而不是MLP相结合。定量和定性实验是根据公开可用的基准测试和Semanticposs进行的,这表明我们的管道与最先进的模型相比,我们的管道取得了更好的MIOU和推理性能。该代码将在https://github.com/huixiancheng/cenet上找到。
translated by 谷歌翻译
LIDAR传感器对于自动驾驶汽车和智能机器人的感知系统至关重要。为了满足现实世界应用程序中的实时要求,有必要有效地分割激光扫描。以前的大多数方法将3D点云直接投影到2D球形范围图像上,以便它们可以利用有效的2D卷积操作进行图像分割。尽管取得了令人鼓舞的结果,但在球形投影中,邻里信息尚未保存得很好。此外,在单个扫描分割任务中未考虑时间信息。为了解决这些问题,我们提出了一种新型的语义分割方法,用于元素rangeseg的激光雷达序列,其中引入了新的范围残差图像表示以捕获空间时间信息。具体而言,使用元内核来提取元特征,从而减少了2D范围图像坐标输入和3D笛卡尔坐标输出之间的不一致。有效的U-NET主链用于获得多尺度功能。此外,特征聚合模块(FAM)增强了范围通道的作用,并在不同级别上汇总特征。我们已经进行了广泛的实验,以评估semantickitti和semanticposs。有希望的结果表明,我们提出的元rangeseg方法比现有方法更有效。我们的完整实施可在https://github.com/songw-zju/meta-rangeseg上公开获得。
translated by 谷歌翻译
农业部门的自动化和机器人被视为该行业面临的社会经济挑战的可行解决方案。该技术经常依赖于提供有关作物,植物和整个环境的信息的智能感知系统。传统的2D视觉系统面临的挑战可以由现代3D视觉系统解决,使物体,尺寸和形状估计的直接定位或闭塞的处理能够。到目前为止,使用3D感测主要限于室内或结构化环境。在本文中,我们评估了现代传感技术,包括立体声和飞行时间摄像机,用于在农业中的形状的3D感知,并根据其形状从背景中分割软果实的可用性。为此,我们提出了一种新颖的3D深度神经网络,其利用来自基于相机的3D传感器的信息的有组织性质。与最先进的3D网络相比,我们展示了所提出的体系结构的卓越性能和效率。通过模拟研究,我们还显示了农业中对象分割的3D感测范例的潜力,并提供了洞察力和分析所需的形状质量和预期作物的进一步分析。这项工作的结果应该鼓励研究人员和公司开发更准确和强大的3D传感技术,以确保他们在实际农业应用中更广泛的采用。
translated by 谷歌翻译
从预期的观点(例如范围视图(RV)和Bird's-eye-view(BEV))进行了云云语义细分。不同的视图捕获了点云的不同信息,因此彼此互补。但是,最近基于投影的点云语义分割方法通常会利用一种香草后期的融合策略来预测不同观点,因此未能从表示学习过程中从几何学角度探索互补信息。在本文中,我们引入了一个几何流动网络(GFNET),以探索以融合方式对准不同视图之间的几何对应关系。具体而言,我们设计了一个新颖的几何流量模块(GFM),以双向对齐并根据端到端学习方案下的几何关系跨不同观点传播互补信息。我们对两个广泛使用的基准数据集(Semantickitti和Nuscenes)进行了广泛的实验,以证明我们的GFNET对基于项目的点云语义分割的有效性。具体而言,GFNET不仅显着提高了每个单独观点的性能,而且还可以在所有基于投影的模型中取得最新的结果。代码可在\ url {https://github.com/haibo-qiu/gfnet}中获得。
translated by 谷歌翻译
Scene understanding is a major challenge of today's computer vision. Center to this task is image segmentation, since scenes are often provided as a set of pictures. Nowadays, many such datasets also provide 3D geometry information given as a 3D point cloud acquired by a laser scanner or a depth camera. To exploit this geometric information, many current approaches rely on both a 2D loss and 3D loss, requiring not only 2D per pixel labels but also 3D per point labels. However obtaining a 3D groundtruth is challenging, time-consuming and error-prone. In this paper, we show that image segmentation can benefit from 3D geometric information without requiring any 3D groundtruth, by training the geometric feature extraction with a 2D segmentation loss in an end-to-end fashion. Our method starts by extracting a map of 3D features directly from the point cloud by using a lightweight and simple 3D encoder neural network. The 3D feature map is then used as an additional input to a classical image segmentation network. During training, the 3D features extraction is optimized for the segmentation task by back-propagation through the entire pipeline. Our method exhibits state-of-the-art performance with much lighter input dataset requirements, since no 3D groundtruth is required.
translated by 谷歌翻译
准确的移动对象细分是自动驾驶的重要任务。它可以为许多下游任务提供有效的信息,例如避免碰撞,路径计划和静态地图构建。如何有效利用时空信息是3D激光雷达移动对象分割(LIDAR-MOS)的关键问题。在这项工作中,我们提出了一个新型的深神经网络,利用了时空信息和不同的LiDAR扫描表示方式,以提高LIDAR-MOS性能。具体而言,我们首先使用基于图像图像的双分支结构来分别处理可以从顺序的LiDAR扫描获得的空间和时间信息,然后使用运动引导的注意模块组合它们。我们还通过3D稀疏卷积使用点完善模块来融合LIDAR范围图像和点云表示的信息,并减少对象边界上的伪像。我们验证了我们提出的方法对Semantickitti的LiDAR-MOS基准的有效性。我们的方法在LiDar-Mos IOU方面大大优于最先进的方法。从设计的粗到精细体系结构中受益,我们的方法以传感器框架速率在线运行。我们方法的实现可作为开源可用:https://github.com/haomo-ai/motionseg3d。
translated by 谷歌翻译
在鸟眼中学习强大的表现(BEV),以进行感知任务,这是趋势和吸引行业和学术界的广泛关注。大多数自动驾驶算法的常规方法在正面或透视视图中执行检测,细分,跟踪等。随着传感器配置变得越来越复杂,从不同的传感器中集成了多源信息,并在统一视图中代表功能至关重要。 BEV感知继承了几个优势,因为代表BEV中的周围场景是直观和融合友好的。对于BEV中的代表对象,对于随后的模块,如计划和/或控制是最可取的。 BEV感知的核心问题在于(a)如何通过从透视视图到BEV来通过视图转换来重建丢失的3D信息; (b)如何在BEV网格中获取地面真理注释; (c)如何制定管道以合并来自不同来源和视图的特征; (d)如何适应和概括算法作为传感器配置在不同情况下各不相同。在这项调查中,我们回顾了有关BEV感知的最新工作,并对不同解决方案进行了深入的分析。此外,还描述了该行业的BEV方法的几种系统设计。此外,我们推出了一套完整的实用指南,以提高BEV感知任务的性能,包括相机,激光雷达和融合输入。最后,我们指出了该领域的未来研究指示。我们希望该报告能阐明社区,并鼓励对BEV感知的更多研究。我们保留一个活跃的存储库来收集最新的工作,并在https://github.com/openperceptionx/bevperception-survey-recipe上提供一包技巧的工具箱。
translated by 谷歌翻译
机载激光扫描(ALS)点云的分类是遥感和摄影测量场的关键任务。尽管最近基于深度学习的方法取得了令人满意的表现,但他们忽略了接受场的统一性,这使得ALS点云分类对于区分具有复杂结构和极端规模变化的区域仍然具有挑战性。在本文中,为了配置多受感受性的场特征,我们提出了一个新型的接受场融合和分层网络(RFFS-NET)。以新颖的扩张图卷积(DGCONV)及其扩展环形扩张卷积(ADCONV)作为基本的构建块,使用扩张和环形图融合(Dagfusion)模块实现了接受场融合过程,该模块获得了多受感染的场特征代表通过捕获带有各种接收区域的扩张和环形图。随着计算碱基的计算基础,使用嵌套在RFFS-NET中的多级解码器进行的接收场的分层,并由多层接受场聚集损失(MRFALOSS)驱动,以驱动网络驱动网络以学习在具有不同分辨率的监督标签的方向。通过接受场融合和分层,RFFS-NET更适应大型ALS点云中具有复杂结构和极端尺度变化区域的分类。在ISPRS Vaihingen 3D数据集上进行了评估,我们的RFFS-NET显着优于MF1的基线方法5.3%,而MIOU的基线方法的总体准确性为82.1%,MF1的总准确度为71.6%,MIOU的MF1和MIOU为58.2%。此外,LASDU数据集和2019 IEEE-GRSS数据融合竞赛数据集的实验显示,RFFS-NET可以实现新的最新分类性能。
translated by 谷歌翻译