轻巧的飞行时间(TOF)深度传感器很小,便宜,低能量,并且已在移动设备上大量部署在移动设备上,以进行自动对焦,障碍物检测等。但是,由于其特定的测量值(深度分布)在某个像素时的区域而不是深度值,并且分辨率极低,它们不足以用于需要高保真深度(例如3D重建)的应用。在本文中,我们提出了Deltar,这是一种新颖的方法,可以通过与颜色图像合作来赋予高分辨率和准确深度的能力。作为Deltar的核心,提出了一种用于深度分布的特征提取器,并提出了基于注意力的神经体系结构,以有效地从颜色和TOF域中融合信息。为了在现实世界中评估我们的系统,我们设计了一个数据收集设备,并提出了一种校准RGB摄像头和TOF传感器的新方法。实验表明,我们的方法比旨在使用商品级RGB-D传感器的PAR性能实现的现有框架比现有的框架产生更准确的深度。代码和数据可在https://zju3dv.github.io/deltar/上获得。
translated by 谷歌翻译
深度完成旨在预测从深度传感器(例如Lidars)中捕获的极稀疏图的密集像素深度。它在各种应用中起着至关重要的作用,例如自动驾驶,3D重建,增强现实和机器人导航。基于深度学习的解决方案已经证明了这项任务的最新成功。在本文中,我们首次提供了全面的文献综述,可帮助读者更好地掌握研究趋势并清楚地了解当前的进步。我们通过通过对现有方法进行分类的新型分类法提出建议,研究网络体系结构,损失功能,基准数据集和学习策略的设计方面的相关研究。此外,我们在包括室内和室外数据集(包括室内和室外数据集)上进行了三个广泛使用基准测试的模型性能进行定量比较。最后,我们讨论了先前作品的挑战,并为读者提供一些有关未来研究方向的见解。
translated by 谷歌翻译
间接飞行时间(I-TOF)成像是由于其小尺寸和价格合理的价格导致移动设备的深度估计方式。以前的作品主要专注于I-TOF成像的质量改进,特别是固化多路径干扰(MPI)的效果。这些调查通常在特定约束的场景中进行,在近距离,室内和小环境光下。令人惊讶的一点工作已经调查了现实生活场景的I-TOF质量改善,其中强烈的环境光线和远距离由于具有限制传感器功率和光散射而导致的诱导射击噪声和信号稀疏引起的困难。在这项工作中,我们提出了一种基于新的学习的端到端深度预测网络,其噪声原始I-TOF信号以及RGB图像基于涉及隐式和显式对齐的多步方法来解决它们的潜在表示。预测与RGB视点对齐的高质量远程深度图。与基线方法相比,我们在挑战真实世界场景中测试了挑战性质场景的方法,并在最终深度地图上显示了超过40%的RMSE改进。
translated by 谷歌翻译
作为许多自主驾驶和机器人活动的基本组成部分,如自我运动估计,障碍避免和场景理解,单眼深度估计(MDE)引起了计算机视觉和机器人社区的极大关注。在过去的几十年中,已经开发了大量方法。然而,据我们所知,对MDE没有全面调查。本文旨在通过审查1970年至2021年之间发布的197个相关条款来弥补这一差距。特别是,我们为涵盖各种方法的MDE提供了全面的调查,介绍了流行的绩效评估指标并汇总公开的数据集。我们还总结了一些代表方法的可用开源实现,并比较了他们的表演。此外,我们在一些重要的机器人任务中审查了MDE的应用。最后,我们通过展示一些有希望的未来研究方向来结束本文。预计本调查有助于读者浏览该研究领域。
translated by 谷歌翻译
Time-resolved image sensors that capture light at pico-to-nanosecond timescales were once limited to niche applications but are now rapidly becoming mainstream in consumer devices. We propose low-cost and low-power imaging modalities that capture scene information from minimal time-resolved image sensors with as few as one pixel. The key idea is to flood illuminate large scene patches (or the entire scene) with a pulsed light source and measure the time-resolved reflected light by integrating over the entire illuminated area. The one-dimensional measured temporal waveform, called \emph{transient}, encodes both distances and albedoes at all visible scene points and as such is an aggregate proxy for the scene's 3D geometry. We explore the viability and limitations of the transient waveforms by themselves for recovering scene information, and also when combined with traditional RGB cameras. We show that plane estimation can be performed from a single transient and that using only a few more it is possible to recover a depth map of the whole scene. We also show two proof-of-concept hardware prototypes that demonstrate the feasibility of our approach for compact, mobile, and budget-limited applications.
translated by 谷歌翻译
商业深度传感器通常会产生嘈杂和缺失的深度,尤其是在镜面和透明的对象上,这对下游深度或基于点云的任务构成了关键问题。为了减轻此问题,我们提出了一个强大的RGBD融合网络Swindrnet,以进行深度修复。我们进一步提出了域随机增强深度模拟(DREDS)方法,以使用基于物理的渲染模拟主动的立体声深度系统,并生成一个大规模合成数据集,该数据集包含130k Photorealistic RGB图像以及其模拟深度带有现实主义的传感器。为了评估深度恢复方法,我们还策划了一个现实世界中的数据集,即STD,该数据集捕获了30个混乱的场景,这些场景由50个对象组成,具有不同的材料,从透明,透明,弥漫性。实验表明,提议的DREDS数据集桥接了SIM到实地域间隙,因此,经过训练,我们的Swindrnet可以无缝地概括到其他真实的深度数据集,例如。 ClearGrasp,并以实时速度优于深度恢复的竞争方法。我们进一步表明,我们的深度恢复有效地提高了下游任务的性能,包括类别级别的姿势估计和掌握任务。我们的数据和代码可从https://github.com/pku-epic/dreds获得
translated by 谷歌翻译
透明的物体广泛用于工业自动化和日常生活中。但是,强大的视觉识别和对透明物体的感知一直是一个主要挑战。目前,由于光的折射和反射,大多数商用级深度摄像机仍然不擅长感知透明物体的表面。在这项工作中,我们从单个RGB-D输入中提出了一种基于变压器的透明对象深度估计方法。我们观察到,变压器的全球特征使得更容易提取上下文信息以执行透明区域的深度估计。此外,为了更好地增强细粒度的特征,功能融合模块(FFM)旨在帮助连贯的预测。我们的经验证据表明,与以前的最新基于卷积的数据集相比,我们的模型在最近的流行数据集中有了重大改进,例如RMSE增长25%,RER增长21%。广泛的结果表明,我们的基于变压器的模型可以更好地汇总对象的RGB和不准确的深度信息,以获得更好的深度表示。我们的代码和预培训模型将在https://github.com/yuchendoudou/tode上找到。
translated by 谷歌翻译
许多移动制造商最近在其旗舰模型中采用了双像素(DP)传感器,以便更快的自动对焦和美学图像捕获。尽管他们的优势,由于DT在DP图像中的视差缺失的数据集和算法设计,但对3D面部理解的使用研究受到限制。这是因为子孔图像的基线非常窄,并且散焦模糊区域存在视差。在本文中,我们介绍了一种以DP为导向的深度/普通网络,该网络重建3D面部几何。为此目的,我们使用我们的多摄像头结构光系统捕获的101人拥有超过135k张图片的DP面部数据。它包含相应的地面真值3D模型,包括度量刻度的深度图和正常。我们的数据集允许建议的匹配网络广泛化,以便以3D面部深度/正常估计。所提出的网络由两种新颖的模块组成:自适应采样模块和自适应正常模块,专门用于处理DP图像中的散焦模糊。最后,该方法实现了最近基于DP的深度/正常估计方法的最先进的性能。我们还展示了估计深度/正常的适用性面对欺骗和致密。
translated by 谷歌翻译
Our long term goal is to use image-based depth completion to quickly create 3D models from sparse point clouds, e.g. from SfM or SLAM. Much progress has been made in depth completion. However, most current works assume well distributed samples of known depth, e.g. Lidar or random uniform sampling, and perform poorly on uneven samples, such as from keypoints, due to the large unsampled regions. To address this problem, we extend CSPN with multiscale prediction and a dilated kernel, leading to much better completion of keypoint-sampled depth. We also show that a model trained on NYUv2 creates surprisingly good point clouds on ETH3D by completing sparse SfM points.
translated by 谷歌翻译
现有的深度完成方法通常以特定的稀疏深度类型为目标,并且在任务域之间概括较差。我们提出了一种方法,可以通过各种范围传感器(包括现代手机中的范围传感器或多视图重建算法)获得稀疏/半密度,嘈杂和潜在的低分辨率深度图。我们的方法利用了在大规模数据集中训练的单个图像深度预测网络的形式的数据驱动的先验,其输出被用作我们模型的输入。我们提出了一个有效的培训计划,我们在典型的任务域中模拟各种稀疏模式。此外,我们设计了两个新的基准测试,以评估深度完成方法的普遍性和鲁棒性。我们的简单方法显示了针对最先进的深度完成方法的优越的跨域泛化能力,从而引入了一种实用的解决方案,以在移动设备上捕获高质量的深度捕获。代码可在以下网址获得:https://github.com/yvanyin/filldepth。
translated by 谷歌翻译
我们介绍了一种新的数据驱动方法,具有基于物理的前沿,从单个偏振图像到场景级正常估计。来自偏振(SFP)的现有形状主要专注于估计单个物体的正常,而不是野外的复杂场景。高质量场景级SFP的关键障碍是复杂场景中缺乏现实世界的SFP数据。因此,我们贡献了第一个现实世界场景级SFP数据集,具有配对输入偏振图像和地理正常映射。然后,我们提出了一种基于学习的框架,具有多头自我注意模块和观察编码,该框架被设计为处理由场景级SFP中的复杂材料和非正交投影引起的增加的偏振模糊。由于偏振光和表面法线之间的关系不受距离的影响,我们训练的模型可以广泛地展开到远场户外场景。实验结果表明,我们的方法在两个数据集中显着优于现有的SFP模型。我们的数据集和源代码将公开可用于\ url {https://github.com/chenyanglei/sfp-wild}。
translated by 谷歌翻译
现代计算机视觉已超越了互联网照片集的领域,并进入了物理世界,通过非结构化的环境引导配备摄像头的机器人和自动驾驶汽车。为了使这些体现的代理与现实世界对象相互作用,相机越来越多地用作深度传感器,重建了各种下游推理任务的环境。机器学习辅助的深度感知或深度估计会预测图像中每个像素的距离。尽管已经在深入估算中取得了令人印象深刻的进步,但仍然存在重大挑战:(1)地面真相深度标签很难大规模收集,(2)通常认为相机信息是已知的,但通常是不可靠的,并且(3)限制性摄像机假设很常见,即使在实践中使用了各种各样的相机类型和镜头。在本论文中,我们专注于放松这些假设,并描述将相机变成真正通用深度传感器的最终目标的贡献。
translated by 谷歌翻译
在本文中,我们的目标是在各种照明条件下解决复杂场景中一致的深度预测问题。现有的基于RGB-D传感器或虚拟渲染的室内数据集具有两个关键限制 - 稀疏深度映射(NYU深度V2)和非现实照明(Sun CG,SceneNet RGB-D)。我们建议使用Internet 3D室内场景并手动调整其照明,以呈现照片逼真的RGB照片及其相应的深度和BRDF地图,获取名为Vari DataSet的新室内深度数据集。通过在编码特征上应用深度可分离扩张的卷积来处理全局信息并减少参数,提出了一个名为DCA的简单卷积块。我们对这些扩张的特征进行横向关注,以保留不同照明下深度预测的一致性。通过将其与Vari数据集上的当前最先进的方法进行比较来评估我们的方法,并且在我们的实验中观察到显着改善。我们还开展了融合研究,Finetune我们的NYU深度V2模型,并评估了真实数据,以进一步验证我们的DCA块的有效性。代码,预先训练的权重和vari数据集是开放的。
translated by 谷歌翻译
以视觉为中心的BEV感知由于其固有的优点,最近受到行业和学术界的关注,包括展示世界自然代表和融合友好。随着深度学习的快速发展,已经提出了许多方法来解决以视觉为中心的BEV感知。但是,最近没有针对这个小说和不断发展的研究领域的调查。为了刺激其未来的研究,本文对以视觉为中心的BEV感知及其扩展进行了全面调查。它收集并组织了最近的知识,并对常用算法进行了系统的综述和摘要。它还为几项BEV感知任务提供了深入的分析和比较结果,从而促进了未来作品的比较并激发了未来的研究方向。此外,还讨论了经验实现细节并证明有利于相关算法的开发。
translated by 谷歌翻译
现代智能手机可以在60〜Hz中持续流动多百万像素RGB图像,与高质量的3D姿势信息和低分辨率LIDAR驱动深度估计同步。在快照照片期间,摄影师的手的自然不稳定性提供了相机姿势的毫米级别变化,我们可以在圆形缓冲器中与RGB和深度一起捕获。在这项工作中,我们探索如何从取景期间获得的这些测量束,我们可以将密集的微基线线视差提示与千克激光雷达深度相结合,以蒸馏高保真深度图。我们采取测试时间优化方法并训练坐标MLP,以沿着摄影师的自然抖动跟踪的路径的连续坐标输出光度计和几何一致深度估计。该方法将高分辨率深度估计为“点拍摄”桌面摄影而言,不需要额外的硬件,人造手动运动或超出按钮的按钮的用户交互。
translated by 谷歌翻译
尽管在过去几年中取得了重大进展,但使用单眼图像进行深度估计仍然存在挑战。首先,训练度量深度预测模型的训练是不算气的,该预测模型可以很好地推广到主要由于训练数据有限的不同场景。因此,研究人员建立了大规模的相对深度数据集,这些数据集更容易收集。但是,由于使用相对深度数据训练引起的深度转移,现有的相对深度估计模型通常无法恢复准确的3D场景形状。我们在此处解决此问题,并尝试通过对大规模相对深度数据进行训练并估算深度转移来估计现场形状。为此,我们提出了一个两阶段的框架,该框架首先将深度预测到未知量表并从单眼图像转移,然后利用3D点云数据来预测深度​​移位和相机的焦距,使我们能够恢复恢复3D场景形状。由于两个模块是单独训练的,因此我们不需要严格配对的培训数据。此外,我们提出了图像级的归一化回归损失和基于正常的几何损失,以通过相对深度注释来改善训练。我们在九个看不见的数据集上测试我们的深度模型,并在零拍摄评估上实现最先进的性能。代码可用:https://git.io/depth
translated by 谷歌翻译
在本文中,我们基于我们对多视图立体声(MVS)中的特征匹配的探索来呈现TransVSNet。我们将MVS模拟返回其特征匹配任务的性质,因此提出了一个强大的功能匹配变换器(FMT),以利用(自我)和(交叉)关注(交叉)在图像内和跨越图像中聚合的长程上下文信息。为了便于更好地调整FMT,我们利用自适应接收领域(ARF)模块,以确保在特征范围内平滑过境,并使用特征途径桥接不同阶段,以通过不同尺度的转换特征和梯度。此外,我们应用配对特征相关性以测量特征之间的相似性,并采用歧义降低焦损,以加强监管。据我们所知,TransmVSNet首次尝试将变压器利用到MV的任务。因此,我们的方法在DTU数据集,坦克和寺庙基准测试和BlendedMVS数据集中实现了最先进的性能。我们的方法代码将在https://github.com/megviirobot/transmvsnet中提供。
translated by 谷歌翻译
深度映射记录场景中的视点和对象之间的距离,这在许多真实应用程序中起着关键作用。然而,消费者级RGB-D相机捕获的深度图遭受了低空间分辨率。引导深度地图超分辨率(DSR)是解决此问题的流行方法,该方法试图从输入的低分辨率(LR)深度及其耦合的HR RGB图像中恢复高分辨率(HR)深度映射和作为指引。引导DSR最具挑战性的问题是如何正确选择一致的结构并传播它们,并正确处理不一致的结构。在本文中,我们提出了一种用于引导DSR的新型关注的分层多模态融合(AHMF)网络。具体地,为了有效地提取和组合来自LR深度和HR引导的相关信息,我们提出了一种基于多模态注意力的融合(MMAF)策略,包括分层卷积层,包括特征增强块,以选择有价值的功能和特征重新校准块来统一不同外观特征的方式的相似性度量。此外,我们提出了一个双向分层特征协作(BHFC)模块,以完全利用多尺度特征之间的低级空间信息和高级结构信息。实验结果表明,在重建精度,运行速度和记忆效率方面,我们的方法优于最先进的方法。
translated by 谷歌翻译
建立新型观点综合的最近进展后,我们提出了改善单眼深度估计的应用。特别是,我们提出了一种在三个主要步骤中分开的新颖训练方法。首先,单眼深度网络的预测结果被扭转到额外的视点。其次,我们应用一个额外的图像综合网络,其纠正并提高了翘曲的RGB图像的质量。通过最小化像素-WISE RGB重建误差,该网络的输出需要尽可能类似地查看地面真实性视图。第三,我们将相同的单眼深度估计重新应用于合成的第二视图点,并确保深度预测与相关的地面真理深度一致。实验结果证明,我们的方法在Kitti和Nyu-Deaft-V2数据集上实现了最先进的或可比性,具有轻量级和简单的香草U-Net架构。
translated by 谷歌翻译
We present an end-to-end deep learning architecture for depth map inference from multi-view images. In the network, we first extract deep visual image features, and then build the 3D cost volume upon the reference camera frustum via the differentiable homography warping. Next, we apply 3D convolutions to regularize and regress the initial depth map, which is then refined with the reference image to generate the final output. Our framework flexibly adapts arbitrary N-view inputs using a variance-based cost metric that maps multiple features into one cost feature. The proposed MVSNet is demonstrated on the large-scale indoor DTU dataset. With simple post-processing, our method not only significantly outperforms previous state-of-the-arts, but also is several times faster in runtime. We also evaluate MVSNet on the complex outdoor Tanks and Temples dataset, where our method ranks first before April 18, 2018 without any fine-tuning, showing the strong generalization ability of MVSNet.
translated by 谷歌翻译