情绪是主观的结构。尽管具有最先进的表现,但最近的端到端语音情感识别系统通常对情绪的主观性质不可知。在这项工作中,我们引入了端到端的贝叶斯神经网络体系结构,以捕捉情绪表达的唤醒维度的固有主观性。据我们所知,这项工作是第一个使用贝叶斯神经网络进行言语情感识别的工作。在培训中,网络学习了权重的分布,以捕获与主观唤醒注释相关的固有不确定性。为此,我们引入了一个损失项,使该模型能够在注释分布中进行明确培训,而不是专门针对均值或金标准标签进行训练。我们在AVEC'16数据集上评估了建议的方法。对结果的定性和定量分析表明,所提出的模型可以恰当地捕获主观唤醒注释的分布,最新的导致不确定性建模的平均值和标准偏差估计。
translated by 谷歌翻译
由于不同的人对他人的情感表达方式有所不同,因此他们在唤醒和价值方面的注释本身是主观的。为了解决这个问题,这些情绪注释通常由多个注释者收集,并在注释者之间平均,以获取唤醒和价值的标签。但是,除了平均水平外,标签的不确定性也令人感兴趣,还应对自动情绪识别进行建模和预测。在文献中,为简单起见,标签不确定性建模通常以高斯对收集的注释的假设进行处理。但是,由于注释者的数量通常由于资源限制而相当小,因此我们认为高斯方法是一个相当粗略的假设。相比之下,在这项工作中,我们建议使用学生的T分布来对标签分布进行建模,这使我们可以考虑可用的注释数量。使用此模型,我们将基于相应的Kullback-Leibler差异函数得出相应的损失函数,并使用它来训练估计器以分布情绪标签,从中可以推断出平均值和不确定性。通过定性和定量分析,我们显示了T分布比高斯分布的好处。我们在AVEC'16数据集上验证了我们提出的方法。结果表明,我们基于T分布的方法对高斯方法进行了改进,而最新的不确定性建模会导致基于语音的情绪识别以及最佳甚至更快的收敛性。
translated by 谷歌翻译
情感识别是需要自然与人类互动的人工智能系统的关键属性。但是,由于情感的固有歧义,任务定义仍然是一个空旷的问题。在本文中,提出了一种基于dirichlet的新型贝叶斯训练损失,以提议言语情感识别,该言语识别为言语识别而建模,它将人类注释者分配给不同的情感类别的单次注释时产生的单热标签的不确定性。一个额外的指标用于通过具有高标签不确定性的检测测试说法来评估性能。这消除了一个主要局限性,即情绪分类系统仅考虑大多数注释者就情感阶级一致的标签来考虑话语。此外,研究了一种常见的方法,以利用通过平均单热标签获得的连续价值“软”标签。我们提出了一个双分支模型的结构,用于以每种能力为基础的情绪分类,该结构在广泛使用的Iemocap数据集上实现了最新的分类结果。基于此,进行了不确定性估计实验。当在Precision-Recall曲线下,当检测高不确定性的话语的情况下,可以通过对软标签的Kullback-Leibler Divergence训练损失来实现最佳性能。使用MSP播客数据集验证了所提出的方法的通用性,该数据集产生了相同的结果模式。
translated by 谷歌翻译
自动影响使用视觉提示的识别是对人类和机器之间完全互动的重要任务。可以在辅导系统和人机交互中找到应用程序。朝向该方向的关键步骤是面部特征提取。在本文中,我们提出了一个面部特征提取器模型,由Realey公司提供的野外和大规模收集的视频数据集培训。数据集由百万标记的框架组成,2,616万科目。随着时间信息对情绪识别域很重要,我们利用LSTM单元来捕获数据中的时间动态。为了展示我们预先训练的面部影响模型的有利性质,我们使用Recola数据库,并与当前的最先进的方法进行比较。我们的模型在一致的相关系数方面提供了最佳结果。
translated by 谷歌翻译
自动识别面部和声音的明显情绪很难,部分原因是各种不确定性来源,包括输入数据和机器学习框架中使用的标签。本文介绍了一种不确定性感知的视听融合方法,该方法量化了对情绪预测的模态不确定性。为此,我们提出了一个新颖的融合框架,在该框架中,我们首先通过视听时间上下文向量学习潜在分布,然后限制单峰潜在分布的方差向量,以便它们表示每种模式的信息量,以提供W.R.T.情绪识别。特别是,我们对视听潜在分布的方差向量施加了校准和序数排名约束。当经过良好校准时,将模态不确定性得分表明它们的相应预测可能与地面真实标签有多大不同。排名良好的不确定性得分允许在模式中对不同框架进行顺序排名。为了共同施加这两种约束,我们提出了软马克斯分布匹配损失。在分类和回归设置中,我们将不确定性感知的融合模型与标准模型 - 静态融合基线进行了比较。我们对两个情绪识别语料库(AVEC 2019 CES和IEMOCAP)的评估表明,视听情绪识别可以从良好的和良好的潜在不确定性度量中受益匪浅。
translated by 谷歌翻译
Single-channel deep speech enhancement approaches often estimate a single multiplicative mask to extract clean speech without a measure of its accuracy. Instead, in this work, we propose to quantify the uncertainty associated with clean speech estimates in neural network-based speech enhancement. Predictive uncertainty is typically categorized into aleatoric uncertainty and epistemic uncertainty. The former accounts for the inherent uncertainty in data and the latter corresponds to the model uncertainty. Aiming for robust clean speech estimation and efficient predictive uncertainty quantification, we propose to integrate statistical complex Gaussian mixture models (CGMMs) into a deep speech enhancement framework. More specifically, we model the dependency between input and output stochastically by means of a conditional probability density and train a neural network to map the noisy input to the full posterior distribution of clean speech, modeled as a mixture of multiple complex Gaussian components. Experimental results on different datasets show that the proposed algorithm effectively captures predictive uncertainty and that combining powerful statistical models and deep learning also delivers a superior speech enhancement performance.
translated by 谷歌翻译
There are two major types of uncertainty one can model. Aleatoric uncertainty captures noise inherent in the observations. On the other hand, epistemic uncertainty accounts for uncertainty in the model -uncertainty which can be explained away given enough data. Traditionally it has been difficult to model epistemic uncertainty in computer vision, but with new Bayesian deep learning tools this is now possible. We study the benefits of modeling epistemic vs. aleatoric uncertainty in Bayesian deep learning models for vision tasks. For this we present a Bayesian deep learning framework combining input-dependent aleatoric uncertainty together with epistemic uncertainty. We study models under the framework with per-pixel semantic segmentation and depth regression tasks. Further, our explicit uncertainty formulation leads to new loss functions for these tasks, which can be interpreted as learned attenuation. This makes the loss more robust to noisy data, also giving new state-of-the-art results on segmentation and depth regression benchmarks.
translated by 谷歌翻译
尽管基于卷积神经网络(CNN)的组织病理学图像的分类模型,但量化其不确定性是不可行的。此外,当数据偏置时,CNN可以遭受过度装备。我们展示贝叶斯-CNN可以通过自动规范并通过量化不确定性来克服这些限制。我们开发了一种新颖的技术,利用贝叶斯-CNN提供的不确定性,这显着提高了大部分测试数据的性能(约为77%的测试数据的准确性提高了约6%)。此外,我们通过非线性维度降低技术将数据投射到低尺寸空间来提供对不确定性的新颖解释。该维度降低能够通过可视化解释测试数据,并在低维特征空间中揭示数据的结构。我们表明,贝叶斯-CNN可以通过分别将假阴性和假阳性降低11%和7.7%的最先进的转移学习CNN(TL-CNN)来表现出远得更好。它具有仅为186万个参数的这种性能,而TL-CNN的参数仅为134.33亿。此外,我们通过引入随机自适应激活功能来修改贝叶斯-CNN。修改后的贝叶斯-CNN在所有性能指标上的贝叶斯-CNN略胜一筹,并显着降低了误报和误报的数量(两者减少了3%)。我们还表明,通过执行McNemar的统计显着性测试,这些结果具有统计学意义。这项工作显示了贝叶斯-CNN对现有技术的优势,解释并利用组织病理学图像的不确定性。它应该在各种医学图像分类中找到应用程序。
translated by 谷歌翻译
多模式分析最近对情感计算的兴趣很大,因为它可以提高情感识别对孤立的单模态方法的整体准确性。多式联情绪识别最有效的技术有效地利用各种和互补的信息来源,例如面部,声带和生理方式,提供全面的特征表示。在本文中,我们专注于基于视频中提取的面部和声乐方式的融合的尺寸情感识别,其中可以捕获复杂的时空关系。大多数现有的融合技术依赖于经常性网络或传统的注意机制,这些机制没有有效地利用视听(A-V)方式的互补性质。我们介绍了一种跨关注融合方法来提取A-V模式的显着特征,允许准确地预测连续值的价值和唤醒。我们的新的跨关节A-V融合模型有效利用了模态关系。特别地,它计算跨关注权重,以专注于各个模态跨越更贡献的特征,从而组合贡献特征表示,然后将其馈送到完全连接的层以用于预测价和唤醒。所提出的方法的有效性在通过Recolat和疲劳(私人)数据集中的视频上进行了实验验证。结果表明,我们的跨关节A-V融合模型是一种经济高效的方法,优于最先进的融合方法。代码可用:\ url {https://github.com/praveena2j/cross-attentional-av-fusion}
translated by 谷歌翻译
Trainable evaluation metrics for machine translation (MT) exhibit strong correlation with human judgements, but they are often hard to interpret and might produce unreliable scores under noisy or out-of-domain data. Recent work has attempted to mitigate this with simple uncertainty quantification techniques (Monte Carlo dropout and deep ensembles), however these techniques (as we show) are limited in several ways -- for example, they are unable to distinguish between different kinds of uncertainty, and they are time and memory consuming. In this paper, we propose more powerful and efficient uncertainty predictors for MT evaluation, and we assess their ability to target different sources of aleatoric and epistemic uncertainty. To this end, we develop and compare training objectives for the COMET metric to enhance it with an uncertainty prediction output, including heteroscedastic regression, divergence minimization, and direct uncertainty prediction. Our experiments show improved results on uncertainty prediction for the WMT metrics task datasets, with a substantial reduction in computational costs. Moreover, they demonstrate the ability of these predictors to address specific uncertainty causes in MT evaluation, such as low quality references and out-of-domain data.
translated by 谷歌翻译
包括MRI,CT和超声在内的医学成像在临床决策中起着至关重要的作用。准确的分割对于测量图像感兴趣的结构至关重要。但是,手动分割是高度依赖性的,这导致了定量测量的高度和内部变异性。在本文中,我们探讨了通过深神经网络参数参数的贝叶斯预测分布可以捕获临床医生的内部变异性的可行性。通过探索和分析最近出现的近似推理方案,我们可以评估近似贝叶斯的深度学习是否具有分割后的后验可以学习分割和临床测量中的内在评估者变异性。实验以两种不同的成像方式进行:MRI和超声。我们从经验上证明,通过深神经网络参数化参数的贝叶斯预测分布可以近似临床医生的内部变异性。我们通过提供临床测量不确定性来定量分析医学图像,展示了一个新的观点。
translated by 谷歌翻译
Kullback-Leibler(KL)差异广泛用于贝叶斯神经网络(BNNS)的变异推理。然而,KL差异具有无限性和不对称性等局限性。我们检查了更通用,有限和对称的詹森 - 香农(JS)差异。我们根据几何JS差异为BNN制定新的损失函数,并表明基于KL差异的常规损失函数是其特殊情况。我们以封闭形式的高斯先验评估拟议损失函数的差异部分。对于任何其他一般的先验,都可以使用蒙特卡洛近似值。我们提供了实施这两种情况的算法。我们证明所提出的损失函数提供了一个可以调整的附加参数,以控制正则化程度。我们得出了所提出的损失函数在高斯先验和后代的基于KL差异的损失函数更好的条件。我们证明了基于嘈杂的CIFAR数据集和有偏见的组织病理学数据集的最新基于KL差异的BNN的性能提高。
translated by 谷歌翻译
现有的多视图分类算法专注于通过利用不同的视图来促进准确性,通常将它们集成到常见的随访任务中。尽管有效,但至关重要的是要确保多视图集成和最终决定的可靠性,尤其是对于嘈杂,腐败和分发数据的可靠性。动态评估不同样本的每种观点的可信度可以提供可靠的集成。这可以通过不确定性估计来实现。考虑到这一点,我们提出了一种新颖的多视图分类算法,称为受信任的多视图分类(TMC),通过在证据级别上动态整合不同的观点,为多视图学习提供了新的范式。提出的TMC可以通过考虑每种观点的证据来促进分类可靠性。具体而言,我们介绍了变异性差异来表征类概率的分布,该分布与不同观点的证据进行了参数,并与Dempster-Shafer理论集成在一起。统一的学习框架会引起准确的不确定性,因此,该模型具有可靠性和鲁棒性,以抵抗可能的噪音或腐败。理论和实验结果都证明了所提出的模型在准确性,鲁棒性和可信度方面的有效性。
translated by 谷歌翻译
我们介绍了我们的多任务学习方法,以预测人声爆发中的情感,年龄和起源(即祖国/语言)。BUST2VEC利用预先训练的语音表示来捕获原始波形的声学信息,并通过对抗训练结合了模型偏见的概念。我们的模型使用预提取的功能获得了相对30%的性能增长,并在ICML EXVO 2022多任务挑战中的所有参与者中得分最高。
translated by 谷歌翻译
智能手表或健身追踪器由于负担得起和纵向监测功能而获得了潜在的健康跟踪设备的广泛欢迎。为了进一步扩大其健康跟踪能力,近年来,研究人员开始研究在实时利用光摄影学(PPG)数据中进行心房颤动(AF)检测的可能性,这是一种几乎所有智能手表中广泛使用的廉价传感器。从PPG信号检测AF检测的重大挑战来自智能手表PPG信号中的固有噪声。在本文中,我们提出了一种基于深度学习的新方法,即利用贝叶斯深度学习的力量来准确地从嘈杂的PPG信号中推断出AF风险,同时提供了预测的不确定性估计。在两个公开可用数据集上进行的广泛实验表明,我们提出的方法贝尼斯甲的表现优于现有的最新方法。此外,贝内斯比特(Bayesbeat)的参数比最先进的基线方法要少40-200倍,使其适合在资源约束可穿戴设备中部署。
translated by 谷歌翻译
在这项工作中,我们使用变分推论来量化无线电星系分类的深度学习模型预测的不确定性程度。我们表明,当标记无线电星系时,个体测试样本的模型后差水平与人类不确定性相关。我们探讨了各种不同重量前沿的模型性能和不确定性校准,并表明稀疏事先产生更良好的校准不确定性估计。使用单个重量的后部分布,我们表明我们可以通过从最低信噪比(SNR)中除去权重来修剪30%的完全连接的层权重,而无需显着损失性能。我们证明,可以使用基于Fisher信息的排名来实现更大程度的修剪,但我们注意到两种修剪方法都会影响Failaroff-Riley I型和II型无线电星系的不确定性校准。最后,我们表明,与此领域的其他工作相比,我们经历了冷的后效,因此后部必须缩小后加权以实现良好的预测性能。我们检查是否调整成本函数以适应模型拼盘可以弥补此效果,但发现它不会产生显着差异。我们还研究了原则数据增强的效果,并发现这改善了基线,而且还没有弥补观察到的效果。我们将其解释为寒冷的后效,因为我们的培训样本过于有效的策划导致可能性拼盘,并将其提高到未来无线电银行分类的潜在问题。
translated by 谷歌翻译
自动情绪识别(ER)最近由于其在许多实际应用中的潜力而引起了很多兴趣。在这种情况下,已经证明多模式方法可以通过结合多样化和互补的信息来源,从而提高性能(超过单峰方法),从而为嘈杂和缺失的方式提供了一些鲁棒性。在本文中,我们根据从视频中提取的面部和声音方式融合的尺寸ER专注于尺寸,其中探索了互补的视听(A-V)关系,以预测个人在价值空间中的情绪状态。大多数最先进的融合技术都依赖于反复的网络或常规的注意机制,这些机制无法有效利用A-V模式的互补性。为了解决这个问题,我们引入了A-V融合的联合跨注意模型,该模型在A-V模态上提取显着特征,从而可以有效利用模式间关系,同时保留模式内关系。特别是,它根据联合特征表示与单个模式的相关性计算交叉意义权重。通过将联合A-V特征表示形式部署到交叉意见模块中,它有助于同时利用内模式和模态关系,从而显着改善系统的性能,而不是香草交叉意见模块。我们提出的方法的有效性是在Recola和AffWild2数据集的挑战性视频中通过实验验证的。结果表明,我们的跨注意A-V融合模型提供了一种具有成本效益的解决方案,即使模式是嘈杂或不存在的,也可以超越最先进的方法。
translated by 谷歌翻译
对于许多工程应用,例如实时模拟或控制,潜在的非线性问题的传统解决方案技术通常是过于计算的。在这项工作中,我们提出了一种高效的深度学习代理框架,能够预测负载下的超弹性体的响应。代理模型采用特殊的卷积神经网络架构,所谓的U-Net的形式,其具有用有限元方法获得的力 - 位移数据训练。我们提出了框架的确定性和概率版本,并研究了三个基准问题。特别是,我们检查最大可能性和变分贝叶斯推论配方的能力,以评估解决方案的置信区间。
translated by 谷歌翻译
深度集合可以被视为最新的深度学习中不确定性量化的最先进的定量。虽然最初提出了该方法作为非贝叶斯技术,但支持其贝叶斯基础的论据也提出。我们表明,通过指定相应的假设,可以将深度集合视为近似贝叶斯方法。我们的研究结果导致改善的近似,导致不确定性的扩大的认识部分。数值示例表明改进的近似可能导致更可靠的不确定性。分析衍生确保易于计算结果。
translated by 谷歌翻译
传统上,将情感建模视为映射可测量的影响表现的过程,这些过程来自用户输入的多种方式,以影响标签。该映射通常是通过机器学习过程来推断的。如果相反,一个人训练一般的主题不变表示,考虑影响信息,然后使用此类表示形式来建模?在本文中,我们假设影响标签构成了情感表示形式的组成部分,而不仅仅是训练信号,我们探讨了如何采用对比度学习的最新范式来发现目的的一般高级感动式的表示形式建模影响。我们介绍了三种不同的监督对比学习方法,用于考虑影响信息的培训表示。在这项最初的研究中,我们根据来自多种模式的用户信息来测试Recola数据集中唤醒预测的建议方法。结果证明了对比度学习的表示能力及其在提高情感模型准确性方面的效率。除了与端到端的唤醒分类相比,其证据更高的性能之外,最终的表示是通用和主题不合时式的,因为训练受到了任何多模式语料库可用的一般影响信息的指导。
translated by 谷歌翻译