包括MRI,CT和超声在内的医学成像在临床决策中起着至关重要的作用。准确的分割对于测量图像感兴趣的结构至关重要。但是,手动分割是高度依赖性的,这导致了定量测量的高度和内部变异性。在本文中,我们探讨了通过深神经网络参数参数的贝叶斯预测分布可以捕获临床医生的内部变异性的可行性。通过探索和分析最近出现的近似推理方案,我们可以评估近似贝叶斯的深度学习是否具有分割后的后验可以学习分割和临床测量中的内在评估者变异性。实验以两种不同的成像方式进行:MRI和超声。我们从经验上证明,通过深神经网络参数化参数的贝叶斯预测分布可以近似临床医生的内部变异性。我们通过提供临床测量不确定性来定量分析医学图像,展示了一个新的观点。
translated by 谷歌翻译
Objective: Convolutional neural networks (CNNs) have demonstrated promise in automated cardiac magnetic resonance image segmentation. However, when using CNNs in a large real-world dataset, it is important to quantify segmentation uncertainty and identify segmentations which could be problematic. In this work, we performed a systematic study of Bayesian and non-Bayesian methods for estimating uncertainty in segmentation neural networks. Methods: We evaluated Bayes by Backprop, Monte Carlo Dropout, Deep Ensembles, and Stochastic Segmentation Networks in terms of segmentation accuracy, probability calibration, uncertainty on out-of-distribution images, and segmentation quality control. Results: We observed that Deep Ensembles outperformed the other methods except for images with heavy noise and blurring distortions. We showed that Bayes by Backprop is more robust to noise distortions while Stochastic Segmentation Networks are more resistant to blurring distortions. For segmentation quality control, we showed that segmentation uncertainty is correlated with segmentation accuracy for all the methods. With the incorporation of uncertainty estimates, we were able to reduce the percentage of poor segmentation to 5% by flagging 31--48% of the most uncertain segmentations for manual review, substantially lower than random review without using neural network uncertainty (reviewing 75--78% of all images). Conclusion: This work provides a comprehensive evaluation of uncertainty estimation methods and showed that Deep Ensembles outperformed other methods in most cases. Significance: Neural network uncertainty measures can help identify potentially inaccurate segmentations and alert users for manual review.
translated by 谷歌翻译
尽管脑肿瘤分割的准确性最近取得了进步,但结果仍然遭受低可靠性和鲁棒性的影响。不确定性估计是解决此问题的有效解决方案,因为它提供了对分割结果的信心。当前的不确定性估计方法基于分位数回归,贝叶斯神经网络,集合和蒙特卡洛辍学者受其高计算成本和不一致的限制。为了克服这些挑战,在最近的工作中开发了证据深度学习(EDL),但主要用于自然图像分类。在本文中,我们提出了一个基于区域的EDL分割框架,该框架可以生成可靠的不确定性图和可靠的分割结果。我们使用证据理论将神经网络的输出解释为从输入特征收集的证据价值。遵循主观逻辑,将证据作为差异分布进行了参数化,预测的概率被视为主观意见。为了评估我们在分割和不确定性估计的模型的性能,我们在Brats 2020数据集上进行了定量和定性实验。结果证明了所提出的方法在量化分割不确定性和稳健分割肿瘤方面的最高性能。此外,我们提出的新框架保持了低计算成本和易于实施的优势,并显示了临床应用的潜力。
translated by 谷歌翻译
现代深层神经网络在医学图像分割任务中取得了显着进展。然而,最近观察到他们倾向于产生过于自信的估计,即使在高度不确定性的情况下,导致校准差和不可靠的模型。在这项工作中,我们介绍了错误的预测(MEEP)的最大熵,分割网络的培训策略,这些网络选择性地惩罚过度自信预测,仅关注错误分类的像素。特别是,我们设计了一个正规化术语,鼓励出于错误的预测,增加了复杂场景中的网络不确定性。我们的方法对于神经结构不可知,不会提高模型复杂性,并且可以与多分割损耗功能耦合。我们在两个具有挑战性的医学图像分割任务中将拟议的策略基准:脑磁共振图像(MRI)中的白质超强度病变,心脏MRI中的心房分段。实验结果表明,具有标准分割损耗的耦合MEEP不仅可以改善模型校准,而且还导致分割质量。
translated by 谷歌翻译
不确定性量化对于机器人感知至关重要,因为过度自信或点估计人员可以导致环境和机器人侵犯和损害。在本文中,我们评估了单视图监督深度学习中的不确定量化的可扩展方法,特别是MC辍学和深度集成。特别是对于MC辍学,我们探讨了阵列在架构中不同级别的效果。我们表明,在编码器的所有层中添加丢失会带来比文献中的其他变化更好的结果。此配置类似地执行与Deep Ensembles具有更低的内存占用,这是相关的简单。最后,我们探讨了伪RGBD ICP的深度不确定性,并展示其估计具有实际规模的准确的双视图相对运动的可能性。
translated by 谷歌翻译
胎儿超声(US)中胎盘的自动分割由于(i)(i)胎盘外观的高度多样性而具有挑战性我们禁止在妊娠晚期进行整个胎盘评估的观点。在这项工作中,我们通过多任务学习方法解决了这三个挑战,该方法结合了单个卷积神经网络中胎盘位置(例如,前,后部)和语义胎盘分段的分类。通过分类任务,模型可以从更大,更多样化的数据集中学习,同时在有限的训练集条件下提高分割任务的准确性。通过这种方法,我们研究了多个评估者的注释的变异性,并表明我们的自动分割(前胎盘的骰子为0.86,后胎盘的骰子为0.83),与观察者内和观察者间的变异性相比,我们的自动段性能达到了人级的性能。最后,我们的方法可以使用由三个阶段组成的多视图US采集管道提供整个胎盘分割:多探针图像采集,图像融合和图像分段。这会导致对较大结构(例如胎盘中的胎盘)的高质量分割,其图像伪像降低,这超出了单个探针的视野。
translated by 谷歌翻译
尽管基于卷积神经网络(CNN)的组织病理学图像的分类模型,但量化其不确定性是不可行的。此外,当数据偏置时,CNN可以遭受过度装备。我们展示贝叶斯-CNN可以通过自动规范并通过量化不确定性来克服这些限制。我们开发了一种新颖的技术,利用贝叶斯-CNN提供的不确定性,这显着提高了大部分测试数据的性能(约为77%的测试数据的准确性提高了约6%)。此外,我们通过非线性维度降低技术将数据投射到低尺寸空间来提供对不确定性的新颖解释。该维度降低能够通过可视化解释测试数据,并在低维特征空间中揭示数据的结构。我们表明,贝叶斯-CNN可以通过分别将假阴性和假阳性降低11%和7.7%的最先进的转移学习CNN(TL-CNN)来表现出远得更好。它具有仅为186万个参数的这种性能,而TL-CNN的参数仅为134.33亿。此外,我们通过引入随机自适应激活功能来修改贝叶斯-CNN。修改后的贝叶斯-CNN在所有性能指标上的贝叶斯-CNN略胜一筹,并显着降低了误报和误报的数量(两者减少了3%)。我们还表明,通过执行McNemar的统计显着性测试,这些结果具有统计学意义。这项工作显示了贝叶斯-CNN对现有技术的优势,解释并利用组织病理学图像的不确定性。它应该在各种医学图像分类中找到应用程序。
translated by 谷歌翻译
Trusting the predictions of deep learning models in safety critical settings such as the medical domain is still not a viable option. Distentangled uncertainty quantification in the field of medical imaging has received little attention. In this paper, we study disentangled uncertainties in image to image translation tasks in the medical domain. We compare multiple uncertainty quantification methods, namely Ensembles, Flipout, Dropout, and DropConnect, while using CycleGAN to convert T1-weighted brain MRI scans to T2-weighted brain MRI scans. We further evaluate uncertainty behavior in the presence of out of distribution data (Brain CT and RGB Face Images), showing that epistemic uncertainty can be used to detect out of distribution inputs, which should increase reliability of model outputs.
translated by 谷歌翻译
量化监督学习模型的不确定性在制定更可靠的预测方面发挥着重要作用。认知不确定性,通常是由于对模型的知识不足,可以通过收集更多数据或精炼学习模型来减少。在过去的几年里,学者提出了许多认识的不确定性处理技术,这些技术可以大致分为两类,即贝叶斯和集合。本文对过去五年来提供了对监督学习的认识性不确定性学习技术的全面综述。因此,我们首先,将认知不确定性分解为偏见和方差术语。然后,介绍了认知不确定性学习技术以及其代表模型的分层分类。此外,提出了几种应用,例如计算机视觉(CV)和自然语言处理(NLP),然后讨论研究差距和可能的未来研究方向。
translated by 谷歌翻译
深度学习(DL)模型为各种医学成像基准挑战提供了最先进的性能,包括脑肿瘤细分(BRATS)挑战。然而,局灶性病理多隔室分割(例如,肿瘤和病变子区)的任务特别具有挑战性,并且潜在的错误阻碍DL模型转化为临床工作流程。量化不确定形式的DL模型预测的可靠性,可以实现最不确定的地区的临床审查,从而建立信任并铺平临床翻译。最近,已经引入了许多不确定性估计方法,用于DL医学图像分割任务。开发指标评估和比较不确定性措施的表现将有助于最终用户制定更明智的决策。在本研究中,我们探索并评估在Brats 2019-2020任务期间开发的公制,以对不确定量化量化(Qu-Brats),并旨在评估和排列脑肿瘤多隔室分割的不确定性估计。该公制(1)奖励不确定性估计,对正确断言产生高置信度,以及在不正确的断言处分配低置信水平的估计数,(2)惩罚导致更高百分比的无关正确断言百分比的不确定性措施。我们进一步基准测试由14个独立参与的Qu-Brats 2020的分割不确定性,所有这些都参与了主要的Brats细分任务。总体而言,我们的研究结果证实了不确定性估计提供了分割算法的重要性和互补价值,因此突出了医学图像分析中不确定性量化的需求。我们的评估代码在HTTPS://github.com/ragmeh11/qu-brats公开提供。
translated by 谷歌翻译
鉴于其精确,效率和客观性,深入学习(DL)在重塑医疗保健系统方面具有很大的承诺。然而,DL模型到嘈杂和分发输入的脆性是在诊所的部署中的疾病。大多数系统产生点估计,无需进一步了解模型不确定性或信心。本文介绍了一个新的贝叶斯深度学习框架,用于分割神经网络中的不确定量化,特别是编码器解码器架构。所提出的框架使用一阶泰勒级近似传播,并学习模型参数分布的前两个矩(均值和协方差,通过最大化培训数据来最大限度地提高界限。输出包括两个地图:分段图像和分段的不确定性地图。细分决定中的不确定性被预测分配的协方差矩阵捕获。我们评估了从磁共振成像和计算机断层扫描的医学图像分割数据上提出的框架。我们在多个基准数据集上的实验表明,与最先进的分割模型相比,所提出的框架对噪声和对抗性攻击更加稳健。此外,所提出的框架的不确定性地图将低置信度(或等效高不确定性)与噪声,伪像或对抗攻击损坏的测试输入图像中的贴片。因此,当通过在不确定性地图中呈现更高的值,该模型可以自评测出现错误预测或错过分割结构的一部分,例如肿瘤。
translated by 谷歌翻译
Clinical diagnostic and treatment decisions rely upon the integration of patient-specific data with clinical reasoning. Cancer presents a unique context that influence treatment decisions, given its diverse forms of disease evolution. Biomedical imaging allows noninvasive assessment of disease based on visual evaluations leading to better clinical outcome prediction and therapeutic planning. Early methods of brain cancer characterization predominantly relied upon statistical modeling of neuroimaging data. Driven by the breakthroughs in computer vision, deep learning became the de facto standard in the domain of medical imaging. Integrated statistical and deep learning methods have recently emerged as a new direction in the automation of the medical practice unifying multi-disciplinary knowledge in medicine, statistics, and artificial intelligence. In this study, we critically review major statistical and deep learning models and their applications in brain imaging research with a focus on MRI-based brain tumor segmentation. The results do highlight that model-driven classical statistics and data-driven deep learning is a potent combination for developing automated systems in clinical oncology.
translated by 谷歌翻译
Bayesian Inference offers principled tools to tackle many critical problems with modern neural networks such as poor calibration and generalization, and data inefficiency. However, scaling Bayesian inference to large architectures is challenging and requires restrictive approximations. Monte Carlo Dropout has been widely used as a relatively cheap way for approximate Inference and to estimate uncertainty with deep neural networks. Traditionally, the dropout mask is sampled independently from a fixed distribution. Recent works show that the dropout mask can be viewed as a latent variable, which can be inferred with variational inference. These methods face two important challenges: (a) the posterior distribution over masks can be highly multi-modal which can be difficult to approximate with standard variational inference and (b) it is not trivial to fully utilize sample-dependent information and correlation among dropout masks to improve posterior estimation. In this work, we propose GFlowOut to address these issues. GFlowOut leverages the recently proposed probabilistic framework of Generative Flow Networks (GFlowNets) to learn the posterior distribution over dropout masks. We empirically demonstrate that GFlowOut results in predictive distributions that generalize better to out-of-distribution data, and provide uncertainty estimates which lead to better performance in downstream tasks.
translated by 谷歌翻译
The self-configuring nnU-Net has achieved leading performance in a large range of medical image segmentation challenges. It is widely considered as the model of choice and a strong baseline for medical image segmentation. However, despite its extraordinary performance, nnU-Net does not supply a measure of uncertainty to indicate its possible failure. This can be problematic for large-scale image segmentation applications, where data are heterogeneous and nnU-Net may fail without notice. In this work, we introduce a novel method to estimate nnU-Net uncertainty for medical image segmentation. We propose a highly effective scheme for posterior sampling of weight space for Bayesian uncertainty estimation. Different from previous baseline methods such as Monte Carlo Dropout and mean-field Bayesian Neural Networks, our proposed method does not require a variational architecture and keeps the original nnU-Net architecture intact, thereby preserving its excellent performance and ease of use. Additionally, we boost the segmentation performance over the original nnU-Net via marginalizing multi-modal posterior models. We applied our method on the public ACDC and M&M datasets of cardiac MRI and demonstrated improved uncertainty estimation over a range of baseline methods. The proposed method further strengthens nnU-Net for medical image segmentation in terms of both segmentation accuracy and quality control.
translated by 谷歌翻译
深度学习(DL)在数字病理应用中表现出很大的潜力。诊断DL的解决方案的鲁棒性对于安全的临床部署至关重要。在这项工作中,我们通过增加数字病理学中的DL预测的不确定性估计,可以通过提高一般预测性能或通过检测错误预测性来导致临床应用的价值增加。我们将模型 - 集成方法(MC辍学和深度集成)的有效性与模型 - 不可知方法(测试时间增强,TTA)进行比较。此外,比较了四个不确定性度量。我们的实验专注于两个域改变情景:转移到不同的医疗中心和癌症的不足亚型。我们的结果表明,不确定性估计可以增加一些可靠性并降低对分类阈值选择的敏感性。虽然高级指标和深度集合在我们的比较中表现最佳,但更简单的度量和TTA的附加值很小。重要的是,所有评估的不确定度估计方法的益处通过域移位减少。
translated by 谷歌翻译
基于深神经网络(DNN)的不确定性(基于DNN)的图像登记算法在部署图像注册算法中起着至关重要的作用在面向研究的处理管道中。目前可用的基于DNN的图像登记算法的不确定性估计方法可能导致临床决策,这是由于对注册的不确定性的潜在不准确估计源是对注册潜在空间的假定参数分布的源。我们引入了NPBDREG,这是一种完全非参数贝叶斯框架,通过将ADAM优化器与随机梯度Langevin Dynamics(SGLD)相结合,以通过后验通过后抽样将基于DNN的可变形图像注册中的不确定性估计。因此,它具有提供与出现未分布数据的存在高度相关的不确定性估计值。我们使用四个公开可用数据库中的$ 390 $图像对(MGH10,CMUC12,ISBR18和LPBA40)在Brain MRI图像配准上证明了NPBDREG的附加价值,与基线概率VoxelMorph模型(PRVXM)相比。 NPBDREG显示了预测不确定性与分布数据($ r> 0.95 $ vs. $ r <0.5 $)的更好相关性,并且注册准确性提高了7.3%(骰子得分,$ 0.74 $ vs。 $ 0.69 $,$ p \ ll 0.01 $),注册平滑度提高了18%(变形字段中的折叠百分比为0.014 vs. 0.017,$ p \ ll 0.01 $)。最后,与基线PRVXM方法相比,NPBDREG证明了由混合结构噪声损坏的数据(骰子得分为$ 0.73 $,$ 0.69 $,$ p \ ll 0.01 $)的概括能力更好。
translated by 谷歌翻译
We introduce ensembles of stochastic neural networks to approximate the Bayesian posterior, combining stochastic methods such as dropout with deep ensembles. The stochastic ensembles are formulated as families of distributions and trained to approximate the Bayesian posterior with variational inference. We implement stochastic ensembles based on Monte Carlo dropout, DropConnect and a novel non-parametric version of dropout and evaluate them on a toy problem and CIFAR image classification. For CIFAR, the stochastic ensembles are quantitatively compared to published Hamiltonian Monte Carlo results for a ResNet-20 architecture. We also test the quality of the posteriors directly against Hamiltonian Monte Carlo simulations in a simplified toy model. Our results show that in a number of settings, stochastic ensembles provide more accurate posterior estimates than regular deep ensembles.
translated by 谷歌翻译
深度展开是一种基于深度学习的图像重建方法,它弥合了基于模型和纯粹的基于深度学习的图像重建方法之间的差距。尽管深层展开的方法实现了成像问题的最新性能,并允许将观察模型纳入重建过程,但它们没有提供有关重建图像的任何不确定性信息,这严重限制了他们在实践中的使用,尤其是用于安全 - 关键成像应用。在本文中,我们提出了一个基于学习的图像重建框架,该框架将观察模型纳入重建任务中,并能够基于深层展开和贝叶斯神经网络来量化认知和核心不确定性。我们证明了所提出的框架在磁共振成像和计算机断层扫描重建问题上的不确定性表征能力。我们研究了拟议框架提供的认知和态度不确定性信息的特征,以激发未来的研究利用不确定性信息来开发更准确,健壮,可信赖,不确定性,基于学习的图像重建和成像问题的分析方法。我们表明,所提出的框架可以提供不确定性信息,同时与最新的深层展开方法实现可比的重建性能。
translated by 谷歌翻译
在这项工作中,我们使用变分推论来量化无线电星系分类的深度学习模型预测的不确定性程度。我们表明,当标记无线电星系时,个体测试样本的模型后差水平与人类不确定性相关。我们探讨了各种不同重量前沿的模型性能和不确定性校准,并表明稀疏事先产生更良好的校准不确定性估计。使用单个重量的后部分布,我们表明我们可以通过从最低信噪比(SNR)中除去权重来修剪30%的完全连接的层权重,而无需显着损失性能。我们证明,可以使用基于Fisher信息的排名来实现更大程度的修剪,但我们注意到两种修剪方法都会影响Failaroff-Riley I型和II型无线电星系的不确定性校准。最后,我们表明,与此领域的其他工作相比,我们经历了冷的后效,因此后部必须缩小后加权以实现良好的预测性能。我们检查是否调整成本函数以适应模型拼盘可以弥补此效果,但发现它不会产生显着差异。我们还研究了原则数据增强的效果,并发现这改善了基线,而且还没有弥补观察到的效果。我们将其解释为寒冷的后效,因为我们的培训样本过于有效的策划导致可能性拼盘,并将其提高到未来无线电银行分类的潜在问题。
translated by 谷歌翻译
深度学习技术在检测医学图像中的对象方面取得了成功,但仍然遭受虚假阳性预测,可能会阻碍准确的诊断。神经网络输出的估计不确定性已用于标记不正确的预测。我们研究了来自神经网络不确定性估计的功能和基于形状的特征,这些特征是根据二进制预测计算出的,从二进制预测中,通过开发基于分类的后处理步骤来减少肝病病变检测中的假阳性,以用于不同的不确定性估计方法。我们证明了两个数据集上所有不确定性估计方法的神经网络的病变检测性能(相对于F1分数)的改善,分别包括腹部MR和CT图像。我们表明,根据神经网络不确定性估计计算的功能往往不会有助于降低假阳性。我们的结果表明,诸如阶级不平衡(真实假阳性比率)和从不确定性图提取的基于形状的特征之类的因素在区分假阳性和真实阳性预测方面起着重要作用
translated by 谷歌翻译