尽管脑肿瘤分割的准确性最近取得了进步,但结果仍然遭受低可靠性和鲁棒性的影响。不确定性估计是解决此问题的有效解决方案,因为它提供了对分割结果的信心。当前的不确定性估计方法基于分位数回归,贝叶斯神经网络,集合和蒙特卡洛辍学者受其高计算成本和不一致的限制。为了克服这些挑战,在最近的工作中开发了证据深度学习(EDL),但主要用于自然图像分类。在本文中,我们提出了一个基于区域的EDL分割框架,该框架可以生成可靠的不确定性图和可靠的分割结果。我们使用证据理论将神经网络的输出解释为从输入特征收集的证据价值。遵循主观逻辑,将证据作为差异分布进行了参数化,预测的概率被视为主观意见。为了评估我们在分割和不确定性估计的模型的性能,我们在Brats 2020数据集上进行了定量和定性实验。结果证明了所提出的方法在量化分割不确定性和稳健分割肿瘤方面的最高性能。此外,我们提出的新框架保持了低计算成本和易于实施的优势,并显示了临床应用的潜力。
translated by 谷歌翻译
尽管脑肿瘤分割的准确性最近有所提高,但结果仍然表现出较低的置信度和稳健性。不确定性估计是改变这种情况的一种有效方法,因为它提供了对分割结果的信心。在本文中,我们提出了一个可信赖的脑肿瘤分割网络,该网络可以产生可靠的分割结果和可靠的不确定性估计,而不会过多的计算负担和骨干网络的修改。在我们的方法中,不确定性是使用主观逻辑理论明确建模的,该理论将主干神经网络的预测视为主观观点,通过将分割的类概率参数视为差异分布。同时,可信赖的分割框架学习了从功能中收集可靠证据的功能,从而导致最终分割结果。总体而言,我们统一的可信赖分割框架使该模型具有可靠性和鲁棒性,对分布式样本。为了评估我们的模型在鲁棒性和可靠性方面的有效性,在Brats 2019数据集中进行了定性和定量实验。
translated by 谷歌翻译
Medical image segmentation (MIS) is essential for supporting disease diagnosis and treatment effect assessment. Despite considerable advances in artificial intelligence (AI) for MIS, clinicians remain skeptical of its utility, maintaining low confidence in such black box systems, with this problem being exacerbated by low generalization for out-of-distribution (OOD) data. To move towards effective clinical utilization, we propose a foundation model named EvidenceCap, which makes the box transparent in a quantifiable way by uncertainty estimation. EvidenceCap not only makes AI visible in regions of uncertainty and OOD data, but also enhances the reliability, robustness, and computational efficiency of MIS. Uncertainty is modeled explicitly through subjective logic theory to gather strong evidence from features. We show the effectiveness of EvidenceCap in three segmentation datasets and apply it to the clinic. Our work sheds light on clinical safe applications and explainable AI, and can contribute towards trustworthiness in the medical domain.
translated by 谷歌翻译
深度学习(DL)模型为各种医学成像基准挑战提供了最先进的性能,包括脑肿瘤细分(BRATS)挑战。然而,局灶性病理多隔室分割(例如,肿瘤和病变子区)的任务特别具有挑战性,并且潜在的错误阻碍DL模型转化为临床工作流程。量化不确定形式的DL模型预测的可靠性,可以实现最不确定的地区的临床审查,从而建立信任并铺平临床翻译。最近,已经引入了许多不确定性估计方法,用于DL医学图像分割任务。开发指标评估和比较不确定性措施的表现将有助于最终用户制定更明智的决策。在本研究中,我们探索并评估在Brats 2019-2020任务期间开发的公制,以对不确定量化量化(Qu-Brats),并旨在评估和排列脑肿瘤多隔室分割的不确定性估计。该公制(1)奖励不确定性估计,对正确断言产生高置信度,以及在不正确的断言处分配低置信水平的估计数,(2)惩罚导致更高百分比的无关正确断言百分比的不确定性措施。我们进一步基准测试由14个独立参与的Qu-Brats 2020的分割不确定性,所有这些都参与了主要的Brats细分任务。总体而言,我们的研究结果证实了不确定性估计提供了分割算法的重要性和互补价值,因此突出了医学图像分析中不确定性量化的需求。我们的评估代码在HTTPS://github.com/ragmeh11/qu-brats公开提供。
translated by 谷歌翻译
现代深层神经网络在医学图像分割任务中取得了显着进展。然而,最近观察到他们倾向于产生过于自信的估计,即使在高度不确定性的情况下,导致校准差和不可靠的模型。在这项工作中,我们介绍了错误的预测(MEEP)的最大熵,分割网络的培训策略,这些网络选择性地惩罚过度自信预测,仅关注错误分类的像素。特别是,我们设计了一个正规化术语,鼓励出于错误的预测,增加了复杂场景中的网络不确定性。我们的方法对于神经结构不可知,不会提高模型复杂性,并且可以与多分割损耗功能耦合。我们在两个具有挑战性的医学图像分割任务中将拟议的策略基准:脑磁共振图像(MRI)中的白质超强度病变,心脏MRI中的心房分段。实验结果表明,具有标准分割损耗的耦合MEEP不仅可以改善模型校准,而且还导致分割质量。
translated by 谷歌翻译
Clinical diagnostic and treatment decisions rely upon the integration of patient-specific data with clinical reasoning. Cancer presents a unique context that influence treatment decisions, given its diverse forms of disease evolution. Biomedical imaging allows noninvasive assessment of disease based on visual evaluations leading to better clinical outcome prediction and therapeutic planning. Early methods of brain cancer characterization predominantly relied upon statistical modeling of neuroimaging data. Driven by the breakthroughs in computer vision, deep learning became the de facto standard in the domain of medical imaging. Integrated statistical and deep learning methods have recently emerged as a new direction in the automation of the medical practice unifying multi-disciplinary knowledge in medicine, statistics, and artificial intelligence. In this study, we critically review major statistical and deep learning models and their applications in brain imaging research with a focus on MRI-based brain tumor segmentation. The results do highlight that model-driven classical statistics and data-driven deep learning is a potent combination for developing automated systems in clinical oncology.
translated by 谷歌翻译
The investigation of uncertainty is of major importance in risk-critical applications, such as medical image segmentation. Belief function theory, a formal framework for uncertainty analysis and multiple evidence fusion, has made significant contributions to medical image segmentation, especially since the development of deep learning. In this paper, we provide an introduction to the topic of medical image segmentation methods using belief function theory. We classify the methods according to the fusion step and explain how information with uncertainty or imprecision is modeled and fused with belief function theory. In addition, we discuss the challenges and limitations of present belief function-based medical image segmentation and propose orientations for future research. Future research could investigate both belief function theory and deep learning to achieve more promising and reliable segmentation results.
translated by 谷歌翻译
Glioblastomas是最具侵略性的快速生长的主要脑癌,起源于大脑的胶质细胞。准确鉴定恶性脑肿瘤及其子区域仍然是医学图像分割中最具挑战性问题之一。脑肿瘤分割挑战(Brats)是自动脑胶质细胞瘤分割算法的流行基准,自于其启动。在今年的挑战中,Brats 2021提供了2,000名术前患者的最大多参数(MPMRI)数据集。在本文中,我们提出了两个深度学习框架的新聚合,即在术前MPMRI中的自动胶质母细胞瘤识别的Deepseg和NNU-Net。我们的集合方法获得了92.00,87.33和84.10和Hausdorff距离为3.81,8.91和16.02的骰子相似度分数,用于增强肿瘤,肿瘤核心和全肿瘤区域,单独进行。这些实验结果提供了证据表明它可以在临床上容易地应用,从而助攻脑癌预后,治疗计划和治疗反应监测。
translated by 谷歌翻译
Automatic segmentation is essential for the brain tumor diagnosis, disease prognosis, and follow-up therapy of patients with gliomas. Still, accurate detection of gliomas and their sub-regions in multimodal MRI is very challenging due to the variety of scanners and imaging protocols. Over the last years, the BraTS Challenge has provided a large number of multi-institutional MRI scans as a benchmark for glioma segmentation algorithms. This paper describes our contribution to the BraTS 2022 Continuous Evaluation challenge. We propose a new ensemble of multiple deep learning frameworks namely, DeepSeg, nnU-Net, and DeepSCAN for automatic glioma boundaries detection in pre-operative MRI. It is worth noting that our ensemble models took first place in the final evaluation on the BraTS testing dataset with Dice scores of 0.9294, 0.8788, and 0.8803, and Hausdorf distance of 5.23, 13.54, and 12.05, for the whole tumor, tumor core, and enhancing tumor, respectively. Furthermore, the proposed ensemble method ranked first in the final ranking on another unseen test dataset, namely Sub-Saharan Africa dataset, achieving mean Dice scores of 0.9737, 0.9593, and 0.9022, and HD95 of 2.66, 1.72, 3.32 for the whole tumor, tumor core, and enhancing tumor, respectively. The docker image for the winning submission is publicly available at (https://hub.docker.com/r/razeineldin/camed22).
translated by 谷歌翻译
机器学习算法支撑现代诊断辅助软件,这在临床实践中证明了有价值的,特别是放射学。然而,不准确的是,主要是由于临床样本的可用性有限,用于培训这些算法,妨碍他们在临床医生中更广泛的适用性,接受和识别。我们对最先进的自动质量控制(QC)方法进行了分析,可以在这些算法中实现,以估计其输出的确定性。我们验证了识别磁共振成像数据中的白质超收缩性(WMH)的大脑图像分割任务上最有前途的方法。 WMH是在上层前期成年中常见的小血管疾病的关联,并且由于其变化的尺寸和分布模式而尤其具有挑战性。我们的研究结果表明,不确定度和骰子预测的聚集在此任务的故障检测中最有效。两种方法在0.82至0.84的情况下独立改善平均骰子。我们的工作揭示了QC方法如何有助于检测失败的分割案例,从而使自动分割更可靠,适合临床实践。
translated by 谷歌翻译
Objective: Convolutional neural networks (CNNs) have demonstrated promise in automated cardiac magnetic resonance image segmentation. However, when using CNNs in a large real-world dataset, it is important to quantify segmentation uncertainty and identify segmentations which could be problematic. In this work, we performed a systematic study of Bayesian and non-Bayesian methods for estimating uncertainty in segmentation neural networks. Methods: We evaluated Bayes by Backprop, Monte Carlo Dropout, Deep Ensembles, and Stochastic Segmentation Networks in terms of segmentation accuracy, probability calibration, uncertainty on out-of-distribution images, and segmentation quality control. Results: We observed that Deep Ensembles outperformed the other methods except for images with heavy noise and blurring distortions. We showed that Bayes by Backprop is more robust to noise distortions while Stochastic Segmentation Networks are more resistant to blurring distortions. For segmentation quality control, we showed that segmentation uncertainty is correlated with segmentation accuracy for all the methods. With the incorporation of uncertainty estimates, we were able to reduce the percentage of poor segmentation to 5% by flagging 31--48% of the most uncertain segmentations for manual review, substantially lower than random review without using neural network uncertainty (reviewing 75--78% of all images). Conclusion: This work provides a comprehensive evaluation of uncertainty estimation methods and showed that Deep Ensembles outperformed other methods in most cases. Significance: Neural network uncertainty measures can help identify potentially inaccurate segmentations and alert users for manual review.
translated by 谷歌翻译
提出了一种基于Dempster-Shafer理论和深度学习的自动证据分割方法,以从三维正电子发射断层扫描(PET)和计算机断层扫描(CT)图像中分割淋巴瘤。该体系结构由深度功能萃取模块和证据层组成。功能提取模块使用编码器框架框架从3D输入中提取语义特征向量。然后,证据层在特征空间中使用原型来计算每个体素的信念函数,以量化有关该位置存在或不存在淋巴瘤的不确定性。基于使用距离的不同方式,比较了两个证据层,以计算质量函数。通过最大程度地减少骰子损失函数,对整个模型进行了训练。表明,深度提取和证据分割的建议组合表现出优于基线UNET模型以及173名患者的数据集中的其他三个最先进的模型。
translated by 谷歌翻译
The clinical interest is often to measure the volume of a structure, which is typically derived from a segmentation. In order to evaluate and compare segmentation methods, the similarity between a segmentation and a predefined ground truth is measured using popular discrete metrics, such as the Dice score. Recent segmentation methods use a differentiable surrogate metric, such as soft Dice, as part of the loss function during the learning phase. In this work, we first briefly describe how to derive volume estimates from a segmentation that is, potentially, inherently uncertain or ambiguous. This is followed by a theoretical analysis and an experimental validation linking the inherent uncertainty to common loss functions for training CNNs, namely cross-entropy and soft Dice. We find that, even though soft Dice optimization leads to an improved performance with respect to the Dice score and other measures, it may introduce a volume bias for tasks with high inherent uncertainty. These findings indicate some of the method's clinical limitations and suggest doing a closer ad-hoc volume analysis with an optional re-calibration step.
translated by 谷歌翻译
深度学习算法的最新进展为解决许多医学图像分析问题带来了重大好处。培训深度学习模型通常需要具有专家标记注释的大型数据集。但是,获取专家标记的注释不仅昂贵,而且主观,容易出错,并且观察者内部变异性会引入标签。由于解剖学的模棱两可,使用深度学习模型来细分医学图像时,这尤其是一个问题。基于图像的医学诊断工具使用经过不正确分段标签训练的深度学习模型可以导致错误的诊断和治疗建议。与单评论注释相比,多评价者注释可能更适合于使用小型培训集的深度学习模型进行训练。本文的目的是开发和评估一种基于MRI中病变特征的多评价者注释和解剖学知识来生成概率标签的方法,以及一种使用概率的标签使用归一化活动性损失作为A的病变特征的解剖学知识,以训练分割模型”。耐噪声损失的功能。通过将17个膝盖MRI扫描的二进制基础真理进行比较,以评估该模型,以用于临床分割和检测骨髓病变(BML)。该方法与二进制跨透镜损失函数相比,该方法成功提高了精度14,召回22和骰子得分8%。总体而言,这项工作的结果表明,使用软标签的拟议归一化主动损失成功地减轻了嘈杂标签的影响。
translated by 谷歌翻译
包括MRI,CT和超声在内的医学成像在临床决策中起着至关重要的作用。准确的分割对于测量图像感兴趣的结构至关重要。但是,手动分割是高度依赖性的,这导致了定量测量的高度和内部变异性。在本文中,我们探讨了通过深神经网络参数参数的贝叶斯预测分布可以捕获临床医生的内部变异性的可行性。通过探索和分析最近出现的近似推理方案,我们可以评估近似贝叶斯的深度学习是否具有分割后的后验可以学习分割和临床测量中的内在评估者变异性。实验以两种不同的成像方式进行:MRI和超声。我们从经验上证明,通过深神经网络参数化参数的贝叶斯预测分布可以近似临床医生的内部变异性。我们通过提供临床测量不确定性来定量分析医学图像,展示了一个新的观点。
translated by 谷歌翻译
在多模式分割领域中,可以考虑不同方式之间的相关性以改善分段结果。考虑到不同MR模型之间的相关性,在本文中,我们提出了一种由新型三关注融合引导的多模态分段网络。我们的网络包括与N个图像源,三关注融合块,双关注融合块和解码路径的N个独立于模型编码路径。独立编码路径的模型可以从n个模式捕获模态特征。考虑到从编码器中提取的所有功能都非常有用,我们建议使用基于双重的融合来重量沿模态和空间路径的特征,可以抑制更少的信息特征,并强调每个模态的有用的功能在不同的位置。由于不同模式之间存在强烈的相关性,基于双重关注融合块,我们提出了一种相关注意模块来形成三关注融合块。在相关性注意模块中,首先使用相关描述块来学习模态之间的相关性,然后基于相关性的约束来指导网络以学习对分段更相关的潜在相关特征。最后,通过解码器投影所获得的融合特征表示以获得分段结果。我们对Brats 2018年脑肿瘤分割进行测试的实验结果证明了我们提出的方法的有效性。
translated by 谷歌翻译
基于深度学习的半监督学习(SSL)方法在医学图像细分中实现了强大的性能,可以通过使用大量未标记的数据来减轻医生昂贵的注释。与大多数现有的半监督学习方法不同,基于对抗性训练的方法通过学习分割图的数据分布来区分样本与不同来源,导致细分器生成更准确的预测。我们认为,此类方法的当前绩效限制是特征提取和学习偏好的问题。在本文中,我们提出了一种新的半监督的对抗方法,称为贴片置信疗法训练(PCA),用于医疗图像分割。我们提出的歧视器不是单个标量分类结果或像素级置信度图,而是创建贴片置信图,并根据斑块的规模进行分类。未标记数据的预测学习了每个贴片中的像素结构和上下文信息,以获得足够的梯度反馈,这有助于歧视器以融合到最佳状态,并改善半监督的分段性能。此外,在歧视者的输入中,我们补充了图像上的语义信息约束,使得未标记的数据更简单,以适合预期的数据分布。关于自动心脏诊断挑战(ACDC)2017数据集和脑肿瘤分割(BRATS)2019挑战数据集的广泛实验表明,我们的方法优于最先进的半监督方法,这证明了其对医疗图像分割的有效性。
translated by 谷歌翻译
脑肿瘤分割是医学图像分析中最具挑战性问题之一。脑肿瘤细分的目标是产生准确描绘脑肿瘤区域。近年来,深入学习方法在解决各种计算机视觉问题时表现出了有希望的性能,例如图像分类,对象检测和语义分割。基于深度学习的方法已经应用于脑肿瘤细分并取得了有希望的结果。考虑到最先进技术所制作的显着突破,我们使用本调查来提供最近开发的深层学习脑肿瘤分割技术的全面研究。在本次调查中选择并讨论了100多篇科学论文,广泛地涵盖了网络架构设计,在不平衡条件下的细分等技术方面,以及多种方式流程。我们还为未来的发展方向提供了富有洞察力的讨论。
translated by 谷歌翻译
本文提出了基于对脑肿瘤细分任务的普遍学习培训方法。在这一概念中,3D分割网络从双互惠对抗性学习方法学习。为了增强分割预测的概括并使分割网络稳健,我们通过在原始患者数据上添加一些噪声来通过增加一些噪声来遵循虚拟的对抗训练方法。通过将其作为定量主观裁判的评论者纳入了批评,分割网络从与分段结果相关的不确定性信息学习。我们在RSNA-ASNR-MICCAI BRATS 2021数据集上培训和评估网络架构。我们在线验证数据集的表现如下:骰子相似度得分为81.38%,90.77%和85.39%; Hausdorff距离(95±95±95毫米)分别为增强肿瘤,全肿瘤和肿瘤核心的5.37毫米,8.56毫米。同样,我们的方法实现了84.55%,90.46%和85.30%的骰子相似度得分,以及最终测试数据集上的13.48 mm,6.32毫米和16.98mm的Hausdorff距离(95 \%)。总体而言,我们所提出的方法对每个肿瘤次区域的分割准确性产生更好的性能。我们的代码实现在https://github.com/himashi92/vizviva_brats_2021上公开使用
translated by 谷歌翻译
由于信息源通常不完美,因此有必要考虑其在多源信息融合任务中的可靠性。在本文中,我们提出了一个新的深层框架,使我们能够使用Dempster-Shafer理论的形式合并多MR图像分割结果,同时考虑到相对于不同类别的不同模式的可靠性。该框架由编码器折线功能提取模块组成,该模块是每个模态在每个体素上计算信念函数的证据分割模块,以及多模式的证据融合模块,该模块为每个模态证据和每个模态证据和折现率分配使用Dempster规则结合折扣证据。整个框架是通过根据折扣骰子指数最小化新的损失功能来培训的,以提高细分精度和可靠性。该方法在1251例脑肿瘤患者的Brats 2021数据库中进行了评估。定量和定性的结果表明,我们的方法表现优于最新技术,并实现了在深神经网络中合并多信息的有效新想法。
translated by 谷歌翻译