传统上,将情感建模视为映射可测量的影响表现的过程,这些过程来自用户输入的多种方式,以影响标签。该映射通常是通过机器学习过程来推断的。如果相反,一个人训练一般的主题不变表示,考虑影响信息,然后使用此类表示形式来建模?在本文中,我们假设影响标签构成了情感表示形式的组成部分,而不仅仅是训练信号,我们探讨了如何采用对比度学习的最新范式来发现目的的一般高级感动式的表示形式建模影响。我们介绍了三种不同的监督对比学习方法,用于考虑影响信息的培训表示。在这项最初的研究中,我们根据来自多种模式的用户信息来测试Recola数据集中唤醒预测的建议方法。结果证明了对比度学习的表示能力及其在提高情感模型准确性方面的效率。除了与端到端的唤醒分类相比,其证据更高的性能之外,最终的表示是通用和主题不合时式的,因为训练受到了任何多模式语料库可用的一般影响信息的指导。
translated by 谷歌翻译
自我监督学习(SSL)是一个新的范式,用于学习判别性表示没有标记的数据,并且与受监督的对手相比,已经达到了可比甚至最新的结果。对比度学习(CL)是SSL中最著名的方法之一,试图学习一般性的信息表示数据。 CL方法主要是针对仅使用单个传感器模态的计算机视觉和自然语言处理应用程序开发的。但是,大多数普遍的计算应用程序都从各种不同的传感器模式中利用数据。虽然现有的CL方法仅限于从一个或两个数据源学习,但我们提出了可可(Crockoa)(交叉模态对比度学习),这是一种自我监督的模型,该模型采用新颖的目标函数来通过计算多功能器数据来学习质量表示形式不同的数据方式,并最大程度地减少了无关实例之间的相似性。我们评估可可对八个最近引入最先进的自我监督模型的有效性,以及五个公共数据集中的两个受监督的基线。我们表明,可可与所有其他方法相比,可可的分类表现出色。同样,可可比其他可用标记数据的十分之一的基线(包括完全监督的模型)的标签高得多。
translated by 谷歌翻译
最近,自我监督的表示学习(SSRL)在计算机视觉,语音,自然语言处理(NLP)以及最近的其他类型的模式(包括传感器的时间序列)中引起了很多关注。自我监督学习的普及是由传统模型通常需要大量通知数据进行培训的事实所驱动的。获取带注释的数据可能是一个困难且昂贵的过程。已经引入了自我监督的方法,以通过使用从原始数据自由获得的监督信号对模型进行判别预训练来提高训练数据的效率。与现有的对SSRL的评论不同,该评论旨在以单一模式为重点介绍CV或NLP领域的方法,我们旨在为时间数据提供对多模式自我监督学习方法的首次全面审查。为此,我们1)提供现有SSRL方法的全面分类,2)通过定义SSRL框架的关键组件来引入通用管道,3)根据其目标功能,网络架构和潜在应用程序,潜在的应用程序,潜在的应用程序,比较现有模型, 4)查看每个类别和各种方式中的现有多模式技术。最后,我们提出了现有的弱点和未来的机会。我们认为,我们的工作对使用多模式和/或时间数据的域中SSRL的要求有了一个观点
translated by 谷歌翻译
情绪识别涉及几个现实世界应用。随着可用方式的增加,对情绪的自动理解正在更准确地进行。多模式情感识别(MER)的成功主要依赖于监督的学习范式。但是,数据注释昂贵,耗时,并且由于情绪表达和感知取决于几个因素(例如,年龄,性别,文化),获得具有高可靠性的标签很难。由这些动机,我们专注于MER的无监督功能学习。我们考虑使用离散的情绪,并用作模式文本,音频和视觉。我们的方法是基于成对方式之间的对比损失,是MER文献中的第一次尝试。与现有的MER方法相比,我们的端到端特征学习方法具有几种差异(和优势):i)无监督,因此学习缺乏数据标记成本; ii)它不需要数据空间增强,模态对准,大量批量大小或时期; iii)它仅在推理时应用数据融合; iv)它不需要对情绪识别任务进行预训练的骨干。基准数据集上的实验表明,我们的方法优于MER中应用的几种基线方法和无监督的学习方法。特别是,它甚至超过了一些有监督的MER最先进的。
translated by 谷歌翻译
自动识别面部和声音的明显情绪很难,部分原因是各种不确定性来源,包括输入数据和机器学习框架中使用的标签。本文介绍了一种不确定性感知的视听融合方法,该方法量化了对情绪预测的模态不确定性。为此,我们提出了一个新颖的融合框架,在该框架中,我们首先通过视听时间上下文向量学习潜在分布,然后限制单峰潜在分布的方差向量,以便它们表示每种模式的信息量,以提供W.R.T.情绪识别。特别是,我们对视听潜在分布的方差向量施加了校准和序数排名约束。当经过良好校准时,将模态不确定性得分表明它们的相应预测可能与地面真实标签有多大不同。排名良好的不确定性得分允许在模式中对不同框架进行顺序排名。为了共同施加这两种约束,我们提出了软马克斯分布匹配损失。在分类和回归设置中,我们将不确定性感知的融合模型与标准模型 - 静态融合基线进行了比较。我们对两个情绪识别语料库(AVEC 2019 CES和IEMOCAP)的评估表明,视听情绪识别可以从良好的和良好的潜在不确定性度量中受益匪浅。
translated by 谷歌翻译
在深度学习研究中,自学学习(SSL)引起了极大的关注,引起了计算机视觉和遥感社区的兴趣。尽管计算机视觉取得了很大的成功,但SSL在地球观测领域的大部分潜力仍然锁定。在本文中,我们对在遥感的背景下为计算机视觉的SSL概念和最新发展提供了介绍,并回顾了SSL中的概念和最新发展。此外,我们在流行的遥感数据集上提供了现代SSL算法的初步基准,从而验证了SSL在遥感中的潜力,并提供了有关数据增强的扩展研究。最后,我们确定了SSL未来研究的有希望的方向的地球观察(SSL4EO),以铺平了两个领域的富有成效的相互作用。
translated by 谷歌翻译
物联网中的智能汽车,智能手机和其他设备(物联网)通常具有多个传感器,会产生多模式数据。联合学习支持从不同设备收集大量多模式数据,而无需共享原始数据。转移学习方法有助于将知识从某些设备传输到其他设备。联合转移学习方法受益于联合学习和转移学习。这个新提出的联合转移学习框架旨在将数据岛与隐私保护联系起来。我们的构建基于联合学习和转移学习。与以前的联合转移学习相比,每个用户应具有相同模式的数据(所有单峰或全模式),我们的新框架更为通用,它允许使用用户数据的混合分布。核心策略是为我们的两种用户使用两种不同但固有连接的培训方法。仅对单峰数据(类型1)的用户采用监督学习,而自我监督的学习则用于使用多模式数据(类型2)的用户,以适用于每种模式的功能及其之间的连接。类型2的这种联系知识将在培训的后期阶段有助于1键入1。新框架中的培训可以分为三个步骤。在第一步中,将具有相同模式的数据的用户分组在一起。例如,仅具有声音信号的用户在第一组中,只有图像的用户在第二组中,并且具有多模式数据的用户在第三组中,依此类推。在第二步中,在小组内执行联合学习,在该小组中,根据小组的性质,使用监督的学习和自学学习。大多数转移学习发生在第三步中,从前步骤获得的网络中的相关部分是汇总的(联合)。
translated by 谷歌翻译
在本文中,我们介绍了2022年多模式情感分析挑战(MUSE)的解决方案,其中包括Muse-Humor,Muse-Rection和Muse Surns Sub-Challenges。 2022年穆斯穆斯(Muse 2022)着重于幽默检测,情绪反应和多模式的情感压力,利用不同的方式和数据集。在我们的工作中,提取了不同种类的多模式特征,包括声学,视觉,文本和生物学特征。这些功能由Temma和Gru融合到自发机制框架中。在本文中,1)提取了一些新的音频功能,面部表达功能和段落级文本嵌入以进行准确的改进。 2)我们通过挖掘和融合多模式特征来显着提高多模式情感预测的准确性和可靠性。 3)在模型培训中应用有效的数据增强策略,以减轻样本不平衡问题并防止模型形成学习有偏见的主题字符。对于博物馆的子挑战,我们的模型获得了0.8932的AUC分数。对于Muse Rection子挑战,我们在测试集上的Pearson相关系数为0.3879,它的表现优于所有其他参与者。对于Muse Surst Sub-Challenge,我们的方法在测试数据集上的唤醒和价值都优于基线,达到了0.5151的最终综合结果。
translated by 谷歌翻译
自动情绪识别(ER)最近由于其在许多实际应用中的潜力而引起了很多兴趣。在这种情况下,已经证明多模式方法可以通过结合多样化和互补的信息来源,从而提高性能(超过单峰方法),从而为嘈杂和缺失的方式提供了一些鲁棒性。在本文中,我们根据从视频中提取的面部和声音方式融合的尺寸ER专注于尺寸,其中探索了互补的视听(A-V)关系,以预测个人在价值空间中的情绪状态。大多数最先进的融合技术都依赖于反复的网络或常规的注意机制,这些机制无法有效利用A-V模式的互补性。为了解决这个问题,我们引入了A-V融合的联合跨注意模型,该模型在A-V模态上提取显着特征,从而可以有效利用模式间关系,同时保留模式内关系。特别是,它根据联合特征表示与单个模式的相关性计算交叉意义权重。通过将联合A-V特征表示形式部署到交叉意见模块中,它有助于同时利用内模式和模态关系,从而显着改善系统的性能,而不是香草交叉意见模块。我们提出的方法的有效性是在Recola和AffWild2数据集的挑战性视频中通过实验验证的。结果表明,我们的跨注意A-V融合模型提供了一种具有成本效益的解决方案,即使模式是嘈杂或不存在的,也可以超越最先进的方法。
translated by 谷歌翻译
多模式分析最近对情感计算的兴趣很大,因为它可以提高情感识别对孤立的单模态方法的整体准确性。多式联情绪识别最有效的技术有效地利用各种和互补的信息来源,例如面部,声带和生理方式,提供全面的特征表示。在本文中,我们专注于基于视频中提取的面部和声乐方式的融合的尺寸情感识别,其中可以捕获复杂的时空关系。大多数现有的融合技术依赖于经常性网络或传统的注意机制,这些机制没有有效地利用视听(A-V)方式的互补性质。我们介绍了一种跨关注融合方法来提取A-V模式的显着特征,允许准确地预测连续值的价值和唤醒。我们的新的跨关节A-V融合模型有效利用了模态关系。特别地,它计算跨关注权重,以专注于各个模态跨越更贡献的特征,从而组合贡献特征表示,然后将其馈送到完全连接的层以用于预测价和唤醒。所提出的方法的有效性在通过Recolat和疲劳(私人)数据集中的视频上进行了实验验证。结果表明,我们的跨关节A-V融合模型是一种经济高效的方法,优于最先进的融合方法。代码可用:\ url {https://github.com/praveena2j/cross-attentional-av-fusion}
translated by 谷歌翻译
近年来,基于脑电图的情绪识别的进步已受到人机相互作用和认知科学领域的广泛关注。但是,如何用有限的标签识别情绪已成为一种新的研究和应用瓶颈。为了解决这个问题,本文提出了一个基于人类中刺激一致的脑电图信号的自我监督组减数分裂对比学习框架(SGMC)。在SGMC中,开发了一种新型遗传学启发的数据增强方法,称为减数分裂。它利用了组中脑电图样品之间的刺激对齐,通过配对,交换和分离来生成增强组。该模型采用组投影仪,从相同的情感视频刺激触发的脑电图样本中提取组级特征表示。然后,使用对比度学习来最大程度地提高具有相同刺激的增强群体的组级表示的相似性。 SGMC在公开可用的DEAP数据集上实现了最先进的情感识别结果,其价值为94.72%和95.68%的价和唤醒维度,并且在公共种子数据集上的竞争性能也具有94.04的竞争性能。 %。值得注意的是,即使使用有限的标签,SGMC也会显示出明显的性能。此外,功能可视化的结果表明,该模型可能已经学习了与情感相关的特征表示,以改善情绪识别。在超级参数分析中进一步评估了组大小的影响。最后,进行了对照实验和消融研究以检查建筑的合理性。该代码是在线公开提供的。
translated by 谷歌翻译
The remarkable success of deep learning in various domains relies on the availability of large-scale annotated datasets. However, obtaining annotations is expensive and requires great effort, which is especially challenging for videos. Moreover, the use of human-generated annotations leads to models with biased learning and poor domain generalization and robustness. As an alternative, self-supervised learning provides a way for representation learning which does not require annotations and has shown promise in both image and video domains. Different from the image domain, learning video representations are more challenging due to the temporal dimension, bringing in motion and other environmental dynamics. This also provides opportunities for video-exclusive ideas that advance self-supervised learning in the video and multimodal domain. In this survey, we provide a review of existing approaches on self-supervised learning focusing on the video domain. We summarize these methods into four different categories based on their learning objectives: 1) pretext tasks, 2) generative learning, 3) contrastive learning, and 4) cross-modal agreement. We further introduce the commonly used datasets, downstream evaluation tasks, insights into the limitations of existing works, and the potential future directions in this area.
translated by 谷歌翻译
我们提出了跨模式的细心连接,这是一种从可穿戴数据中学习的新型动态和有效技术。我们的解决方案可以集成到管道的任何阶段,即在任何卷积层或块之后,以在负责处理每种模式的单个流之间创建中间连接。此外,我们的方法受益于两个属性。首先,它可以单向共享信息(从一种方式到另一种方式)或双向分别。其次,可以同时将其集成到多个阶段中,以进一步允许以几个接触点交换网络梯度。我们对三个公共多模式可穿戴数据集(Wesad,Swell-KW和案例)进行了广泛的实验,并证明我们的方法可以有效地调节不同模式之间的信息,以学习更好的表示。我们的实验进一步表明,一旦整合到基于CNN的多模式溶液(2、3或4模态)中,我们的方法就会导致卓越或竞争性的性能,而不是最先进的表现,并且表现优于各种基线模式和经典的多模式方法。
translated by 谷歌翻译
我们描述了一种新的基于度量的学习方法,介绍了一个多模态框架,并在暹蒙配置中使用深音频和地震检波器编码,以设计适应和轻量级的监督模型。该框架消除了昂贵的数据标签过程的需求,并从从全峰传感系统获得的低多个多师数据学习通用表示。这些传感系统在活动识别任务中提供了许多应用和各种用例。在这里,我们打算探索来自室内环境的人类足迹运动,并分析来自基于声学和振动的传感器的小型自收集数据集的表示。核心思想是在两个感官特征之间学习合理的相似性,并将来自音频和地震孔信号的表示组合。我们提出了一种广义框架,用于从音频和地理孔信号中提取的时间和空间特征中学习嵌入的嵌入。然后,我们提取共享空间中的表示,以最大化声音和地理声音功能之间的兼容功能的学习。反过来,这可以有效地用于从学习模型执行分类任务,如通过将高相似性分配与人体脚步运动的对和不含脚步运动的对的相似性。性能分析表明,我们提出的多模式框架实现了19.99 \%的准确性增加(绝对术语),并且当训练样本从200对增加到只需500对时,避免在评估集上的过度拟合,同时令人满意地学习音频和地震听音乐声音表示。我们的结果采用基于度量的对比学习方法,用于多传感器数据,以减轻数据稀缺的影响,并利用有限的数据尺寸执行人体运动识别。
translated by 谷歌翻译
社交媒体网络已成为人们生活的重要方面,它是其思想,观点和情感的平台。因此,自动化情绪分析(SA)对于以其他信息来源无法识别人们的感受至关重要。对这些感觉的分析揭示了各种应用,包括品牌评估,YouTube电影评论和医疗保健应用。随着社交媒体的不断发展,人们以不同形式发布大量信息,包括文本,照片,音频和视频。因此,传统的SA算法已变得有限,因为它们不考虑其他方式的表现力。通过包括来自各种物质来源的此类特征,这些多模式数据流提供了新的机会,以优化基于文本的SA之外的预期结果。我们的研究重点是多模式SA的最前沿领域,该领域研究了社交媒体网络上发布的视觉和文本数据。许多人更有可能利用这些信息在这些平台上表达自己。为了作为这个快速增长的领域的学者资源,我们介绍了文本和视觉SA的全面概述,包括数据预处理,功能提取技术,情感基准数据集以及适合每个字段的多重分类方法的疗效。我们还简要介绍了最常用的数据融合策略,并提供了有关Visual Textual SA的现有研究的摘要。最后,我们重点介绍了最重大的挑战,并调查了一些重要的情感应用程序。
translated by 谷歌翻译
使用文本,图像,音频,视频等多种方式的多模式深度学习系统,与单独的方式(即单向)系统相比,显示出更好的性能。多式联机学习涉及多个方面:表示,翻译,对齐,融合和共同学习。在当前多式联机学习状态下,假设是在训练和测试时间期间存在,对齐和无噪声。然而,在现实世界的任务中,通常,观察到一个或多个模式丢失,嘈杂,缺乏注释数据,具有不可靠的标签,并且在训练或测试中稀缺,或两者都稀缺。这种挑战是由称为多式联合学习的学习范例解决的。通过使用模态之间的知识传输,包括其表示和预测模型,通过从另一个(资源丰富的)方式利用来自另一(资源丰富的)模型的知识来帮助实现(资源差)模型的建模。共同学习是一个新兴地区,没有专注的评论,明确地关注共同学习所解决的所有挑战。为此,在这项工作中,我们对新兴的多式联合学习领域提供了全面的调查,尚未完整探讨。我们审查实施的实施,以克服一个或多个共同学习挑战,而不明确地将它们视为共同学习挑战。我们基于共同学习和相关实施解决的挑战,展示了多式联合学习的综合分类。用于包括最新的技术与一些应用程序和数据集一起审查。我们的最终目标是讨论挑战和观点以及未来工作的重要思想和方向,我们希望对整个研究界的有益,重点关注这一令人兴奋的领域。
translated by 谷歌翻译
学习时间序列表示只有未标记的数据或几个标签样本可用时,可能是一项具有挑战性的任务。最近,通过对比,通过对比的不同数据观点从未标记的数据中提取有用的表示形式方面,对对比的自我监督学习表现出了很大的改进。在这项工作中,我们通过时间和上下文对比(TS-TCC)提出了一个新颖的时间序列表示学习框架,该框架从未标记的数据中学习了具有对比性学习的无标记数据的表示。具体而言,我们建议时间序列特定的弱和强大的增强,并利用他们的观点在拟议的时间对比模块中学习稳健的时间关系,除了通过我们提出的上下文对比模块学习判别性表示。此外,我们对时间序列数据增强选择进行系统研究,这是对比度学习的关键部分。我们还将TS-TCC扩展到了半监督的学习设置,并提出了一种类感知的TS-TCC(CA-TCC),从可用的少数标​​记数据中受益,以进一步改善TS-TCC学到的表示。具体而言,我们利用TS-TCC生成的强大伪标签来实现班级感知的对比损失。广泛的实验表明,对我们提议的框架所学的功能的线性评估与完全监督的培训相当。此外,我们的框架在少数标记的数据和转移学习方案中显示出高效率。该代码可在\ url {https://github.com/emadeldeen24/ts-tcc}上公开获得。
translated by 谷歌翻译
这项工作对最近的努力进行了系统的综述(自2010年以来),旨在自动分析面对面共同关联的人类社交互动中显示的非语言提示。专注于非语言提示的主要原因是,这些是社会和心理现象的物理,可检测到的痕迹。因此,检测和理解非语言提示至少在一定程度上意味着检测和理解社会和心理现象。所涵盖的主题分为三个:a)建模社会特征,例如领导力,主导,人格特质,b)社会角色认可和社会关系检测以及c)群体凝聚力,同情,rapport和so的互动动态分析向前。我们针对共同的相互作用,其中相互作用的人永远是人类。该调查涵盖了各种各样的环境和场景,包括独立的互动,会议,室内和室外社交交流,二元对话以及人群动态。对于他们每个人,调查都考虑了非语言提示分析的三个主要要素,即数据,传感方法和计算方法。目的是突出显示过去十年的主要进步,指出现有的限制并概述未来的方向。
translated by 谷歌翻译
动物运动跟踪和姿势识别的进步一直是动物行为研究的游戏规则改变者。最近,越来越多的作品比跟踪“更深”,并解决了对动物内部状态(例如情绪和痛苦)的自动认识,目的是改善动物福利,这使得这是对该领域进行系统化的及时时刻。本文对基于计算机的识别情感状态和动物的疼痛的研究进行了全面调查,并涉及面部行为和身体行为分析。我们总结了迄今为止在这个主题中所付出的努力 - 对它们进行分类,从不同的维度进行分类,突出挑战和研究差距,并提供最佳实践建议,以推进该领域以及一些未来的研究方向。
translated by 谷歌翻译
对图像分类任务的对比学习成功的鼓励,我们为3D手姿势估计的结构化回归任务提出了一种新的自我监督方法。对比学习利用未标记的数据来通过损失制定来使用未标记的数据,以鼓励学习的特征表示在任何图像转换下都是不变的。对于3D手姿势估计,它也希望具有不变性地与诸如颜色抖动的外观变换。但是,该任务需要在仿射和转换之类的转换下的标准性。为了解决这个问题,我们提出了一种对比的对比目标,并在3D手姿势估计的背景下展示其有效性。我们通过实验研究了不变性和对比的对比目标的影响,并表明学习的等待特征导致3D手姿势估计的任务的更好表示。此外,我们显示具有足够深度的标准Evenet,在额外的未标记数据上培训,在弗雷手中获得高达14.5%的提高,因此在没有任何任务的专用架构的情况下实现最先进的性能。 https://ait.ethz.ch/projects/2021/peclr/使用代码和模型
translated by 谷歌翻译