近年来,基于脑电图的情绪识别的进步已受到人机相互作用和认知科学领域的广泛关注。但是,如何用有限的标签识别情绪已成为一种新的研究和应用瓶颈。为了解决这个问题,本文提出了一个基于人类中刺激一致的脑电图信号的自我监督组减数分裂对比学习框架(SGMC)。在SGMC中,开发了一种新型遗传学启发的数据增强方法,称为减数分裂。它利用了组中脑电图样品之间的刺激对齐,通过配对,交换和分离来生成增强组。该模型采用组投影仪,从相同的情感视频刺激触发的脑电图样本中提取组级特征表示。然后,使用对比度学习来最大程度地提高具有相同刺激的增强群体的组级表示的相似性。 SGMC在公开可用的DEAP数据集上实现了最先进的情感识别结果,其价值为94.72%和95.68%的价和唤醒维度,并且在公共种子数据集上的竞争性能也具有94.04的竞争性能。 %。值得注意的是,即使使用有限的标签,SGMC也会显示出明显的性能。此外,功能可视化的结果表明,该模型可能已经学习了与情感相关的特征表示,以改善情绪识别。在超级参数分析中进一步评估了组大小的影响。最后,进行了对照实验和消融研究以检查建筑的合理性。该代码是在线公开提供的。
translated by 谷歌翻译
我们提出了Parse,这是一种新颖的半监督结构,用于学习强大的脑电图表现以进行情感识别。为了减少大量未标记数据与标记数据有限的潜在分布不匹配,Parse使用成对表示对准。首先,我们的模型执行数据增强,然后标签猜测大量原始和增强的未标记数据。然后将其锐化的标签和标记数据的凸组合锐化。最后,进行表示对准和情感分类。为了严格测试我们的模型,我们将解析与我们实施并适应脑电图学习的几种最先进的半监督方法进行了比较。我们对四个基于公共EEG的情绪识别数据集,种子,种子IV,种子V和Amigos(价和唤醒)进行这些实验。该实验表明,我们提出的框架在种子,种子-IV和Amigos(Valence)中的标记样品有限的情况下,取得了总体最佳效果,同时接近种子V和Amigos中的总体最佳结果(达到第二好) (唤醒)。分析表明,我们的成对表示对齐方式通过减少未标记数据和标记数据之间的分布比对来大大提高性能,尤其是当每类仅1个样本被标记时。
translated by 谷歌翻译
认识到人类的感情在日常沟通中发挥着关键作用。神经科学已经证明,不同的情绪状态存在于不同脑区,脑电图频带和颞戳中不同程度的激活。在本文中,我们提出了一种新颖的结构来探索情感认可的信息脑电图。所提出的模块,由PST-Integn表示,由位置,光谱和颞件注意力模块组成,用于探索更多辨别性EEG特征。具体地,位置注意模块是捕获在空间尺寸中的不同情绪刺激的激活区域。光谱和时间注意力模块分别分配不同频带和时间片的权重。我们的方法是自适应的,也可以符合其作为插入式模块的3D卷积神经网络(3D-CNN)。我们在两个现实世界数据集进行实验。 3D-CNN结合我们的模块实现了有希望的结果,并证明了PST-关注能够从脑电图中捕获稳定的情感识别模式。
translated by 谷歌翻译
脑电图(EEG)解码旨在识别基于非侵入性测量的脑活动的神经处理的感知,语义和认知含量。当应用于在静态,受控的实验室环境中获取的数据时,传统的EEG解码方法取得了适度的成功。然而,开放世界的环境是一个更现实的环境,在影响EEG录音的情况下,可以意外地出现,显着削弱了现有方法的鲁棒性。近年来,由于其在特征提取的卓越容量,深入学习(DL)被出现为潜在的解决方案。它克服了使用浅架构提取的“手工制作”功能或功能的限制,但通常需要大量的昂贵,专业标记的数据 - 并不总是可获得的。结合具有域特定知识的DL可能允许开发即使具有小样本数据,也可以开发用于解码大脑活动的鲁棒方法。虽然已经提出了各种DL方法来解决EEG解码中的一些挑战,但目前缺乏系统的教程概述,特别是对于开放世界应用程序。因此,本文为开放世界EEG解码提供了对DL方法的全面调查,并确定了有前途的研究方向,以激发现实世界应用中的脑电图解码的未来研究。
translated by 谷歌翻译
与经典信号处理和基于机器学习的框架相比,基于深度学习的方法基于深度学习的方法显着提高了分类准确性。但大多数是由于脑电图数据中存在的受试者间可变性而无法概括对象无关的任务的主题依赖性研究。在这项工作中,提出了一种新的深度学习框架,其能够进行独立的情感识别,由两部分组成。首先,提出了具有通道关注自动泊车的无监督的长短期存储器(LSTM),用于获取主体不变的潜航向量子空间,即每个人的EEG数据中存在的内部变量。其次,提出了一种具有注意力框架的卷积神经网络(CNN),用于对从提出的LSTM获得的编码的较低的潜在空间表示对具有通道 - 注意自身形拓的编码的低潜空间表示的任务。通过注意机制,所提出的方法可以突出EEG信号的显着时间段,这有助于所考虑的情绪,由结果验证。已经使用公共数据集进行了验证的方法,用于EEG信号,例如Deap DataSet,SEED数据集和CHB-MIT数据集。所提出的端到端深度学习框架消除了不同手工工程特征的要求,并提供了一个单一的全面任务不可知性EEG分析工具,能够对主题独立数据进行各种EEG分析。
translated by 谷歌翻译
自我监督学习(SSL)是一个新的范式,用于学习判别性表示没有标记的数据,并且与受监督的对手相比,已经达到了可比甚至最新的结果。对比度学习(CL)是SSL中最著名的方法之一,试图学习一般性的信息表示数据。 CL方法主要是针对仅使用单个传感器模态的计算机视觉和自然语言处理应用程序开发的。但是,大多数普遍的计算应用程序都从各种不同的传感器模式中利用数据。虽然现有的CL方法仅限于从一个或两个数据源学习,但我们提出了可可(Crockoa)(交叉模态对比度学习),这是一种自我监督的模型,该模型采用新颖的目标函数来通过计算多功能器数据来学习质量表示形式不同的数据方式,并最大程度地减少了无关实例之间的相似性。我们评估可可对八个最近引入最先进的自我监督模型的有效性,以及五个公共数据集中的两个受监督的基线。我们表明,可可与所有其他方法相比,可可的分类表现出色。同样,可可比其他可用标记数据的十分之一的基线(包括完全监督的模型)的标签高得多。
translated by 谷歌翻译
脑电图(EEG)是情绪识别的流行和有效工具。但是,研究人员仍然晦涩难懂,人脑中脑电图中脑电图的传播机制及其与情绪的内在相关性仍然晦涩难懂。这项工作提出了四个变体变压器框架〜(空间注意力,暂时关注,顺序的时空注意力和同时的空间临时注意),以探索情感与空间 - 周期性的EEG特征之间的关系。具体而言,空间注意力和时间关注是分别学习拓扑结构信息和时间变化的脑电图特征。顺序的时空注意力在一秒钟的段中引起空间注意力,并在一个样本中依次在一个样本中注意,以探索情绪刺激对同一时间段中不同EEG电极EEG电极的EEG信号的影响程度。同时进行空间和时间关注的同时时空注意力同时进行,用于模拟不同时间段中不同空间特征之间的关系。实验结果表明,同时的时空注意力会导致设计选择中的最佳情感识别精度,这表明建模EEG信号的空间和时间特征的相关性对于情绪识别是重要的。
translated by 谷歌翻译
物联网中的智能汽车,智能手机和其他设备(物联网)通常具有多个传感器,会产生多模式数据。联合学习支持从不同设备收集大量多模式数据,而无需共享原始数据。转移学习方法有助于将知识从某些设备传输到其他设备。联合转移学习方法受益于联合学习和转移学习。这个新提出的联合转移学习框架旨在将数据岛与隐私保护联系起来。我们的构建基于联合学习和转移学习。与以前的联合转移学习相比,每个用户应具有相同模式的数据(所有单峰或全模式),我们的新框架更为通用,它允许使用用户数据的混合分布。核心策略是为我们的两种用户使用两种不同但固有连接的培训方法。仅对单峰数据(类型1)的用户采用监督学习,而自我监督的学习则用于使用多模式数据(类型2)的用户,以适用于每种模式的功能及其之间的连接。类型2的这种联系知识将在培训的后期阶段有助于1键入1。新框架中的培训可以分为三个步骤。在第一步中,将具有相同模式的数据的用户分组在一起。例如,仅具有声音信号的用户在第一组中,只有图像的用户在第二组中,并且具有多模式数据的用户在第三组中,依此类推。在第二步中,在小组内执行联合学习,在该小组中,根据小组的性质,使用监督的学习和自学学习。大多数转移学习发生在第三步中,从前步骤获得的网络中的相关部分是汇总的(联合)。
translated by 谷歌翻译
人们对人类情感状态的稀疏代表性格式的需求日益增长,这些格式可以在有限的计算记忆资源的情况下使用。我们探讨了在潜在矢量空间中代表神经数据对情绪刺激的响应是否可以用于预测情绪状态,并生成参与者和/或情绪特定于情绪的合成EEG数据。我们提出了一个有条件的基于变异自动编码器的框架EEG2VEC,以从脑电图数据中学习生成歧视性表示。关于情感脑电图记录数据集的实验结果表明,我们的模型适用于无监督的脑电图建模,基于潜在表示的三个不同情绪类别(正,中性,负)的分类,可实现68.49%的稳健性能,并产生的合成eeg序列共同存在于真实的脑电图数据输入到特别重建低频信号组件。我们的工作推进了情感脑电图表示可以在例如生成人工(标签)训练数据或减轻手动功能提取的领域,并为记忆约束的边缘计算应用程序提供效率。
translated by 谷歌翻译
目的:在本文中,我们旨在从大量未标记的脑电图(EEG)信号中学习强大的向量表示,以使学习的表示(1)表现得足以替代睡眠分期任务中的原始信号; (2)在较少的标签和嘈杂样本的情况下,提供了比监督模型更好的预测性能。材料和方法:我们提出了一个自我监督的模型,称为与世界表示形式(Contrawr)相比,用于EEG信号表示学习,该模型使用数据集中的全局统计信息来区分与不同睡眠阶段相关的信号。在包括在家中的三个现实世界EEG数据集上评估了Contrawr模型,这些模型既包括在家中录制设置。结果:Contrawr在三个数据集中的睡眠登台任务上,Moco,Simclr,Byol,Simsiam胜过最新的自我监督学习方法。当可用的培训标签较少时,Contrawr还会击败受监督的学习(例如,标记不到2%的数据时,精度提高了4%)。此外,该模型在2D投影中提供了信息表示。讨论:建议的模型可以推广到其他无监督的生理信号学习任务。未来的方向包括探索特定于任务的数据增强,并将自我监督与监督方法结合起来,这是基于本文自我监督学习的最初成功。结论:我们表明,Contrawr对噪声是强大的,并且可以为下游预测任务提供高质量的EEG表示。在低标签场景(例如,只有2%的数据具有标签),Contrawr的预测能力(例如,睡眠分期准确性提高了4%)比监督的基线要好得多。
translated by 谷歌翻译
在情感计算领域的基于生理信号的情感识别,已经支付了相当大的关注。对于可靠性和用户友好的采集,电卸电子活动(EDA)在实际应用中具有很大的优势。然而,基于EDA的情感识别与数百个科目仍然缺乏有效的解决方案。在本文中,我们的工作试图融合主题的各个EDA功能和外部诱发的音乐功能。我们提出了端到端的多模式框架,1维剩余时间和通道注意网络(RTCAN-1D)。对于EDA特征,基于新型的基于凸优化的EDA(CVXEDA)方法被应用于将EDA信号分解为PAHSIC和TONC信号,以进行动态和稳定的功能。首先涉及基于EDA的情感识别的渠道时间关注机制,以改善时间和渠道明智的表示。对于音乐功能,我们将音乐信号与开源工具包opensmile处理,以获取外部特征向量。来自EDA信号和来自音乐的外部情绪基准的个体情感特征在分类层中融合。我们对三个多模式数据集(PMEMO,DEAP,AMIGOS)进行了系统的比较,适用于2级薪酬/唤醒情感识别。我们提出的RTCAN-1D优于现有的最先进的模型,这也验证了我们的工作为大规模情感认可提供了可靠和有效的解决方案。我们的代码已在https://github.com/guanghaoyin/rtcan-1发布。
translated by 谷歌翻译
对于诊断各种疾病的诊断,对睡眠阶段进行分类至关重要。但是,现有的自动诊断方法主要采用“金标准”局部脑图(EEG)或医院中多摄像机仪(PSG)机器的其他单型模式传感信号,这些信号昂贵,导入且因此不适合保健点监测在家。为了在家中启用睡眠阶段监控,我们在本文中分析了红外视频与脑电图信号之间的关系,并提出了一项新任务:通过将有用的知识从EEG信号提炼到视觉视频,使用红外视频对睡眠阶段进行分类。为了为该应用程序建立可靠的跨模式基准,我们开发了一个新的数据集,称为通过红外视频和脑电图($ s^3ve $)看到您的睡眠阶段。 $ s^3ve $是一个大型数据集,包括用于睡眠阶段分类的同步红外视频和脑电图信号,包括105个主题和154,573个视频剪辑,长度超过1100小时。我们的贡献不仅限于数据集,而且还涉及一种新型的跨模式蒸馏基线模型,即结构感知的对比度蒸馏(SACD),以将脑电图知识提升为红外视频特征。 SACD在我们的$ S^3ve $和现有的跨模式蒸馏基准上都达到了最先进的表演。基准方法和基线方法都将被释放给社区。我们希望在睡眠阶段分类中提高更多注意力并促进更多的发展,更重要的是,从临床信号/媒体到传统媒体的跨模式蒸馏。
translated by 谷歌翻译
神经科学领域的研究揭示了情绪模式和脑功能区域之间的关系,展示了不同脑区之间的动态关系是影响通过脑电图(EEG)确定的情绪识别的必要因素。此外,在脑电情绪识别中,我们可以观察到,基于相同的脑电图数据,我们可以观察到粗粒情绪之间的粗粒情绪之间的边界;这表明大型粗糙和小细粒度情绪变化的同意。因此,来自粗糙到细粒度类别的渐进分类过程可能有助于EEG情绪识别。因此,在本研究中,我们提出了一种逐步的图表卷积网络(PGCN),用于捕获EEG情绪信号中的这种固有特性,并逐步学习鉴别性EEG特征。为了适应不同的EEG模式,我们构建了一个双图模块,以表征不同EEG通道之间的内在关系,其中包含神经科学研究的动态功能连接和脑区的静态空间接近信息。此外,通过观察粗糙和细粒度的情绪之间的关系,我们采用双头模块,使PGCN能够逐步了解更多辨别性EEG特征,从粗粒(简单)到细粒度的类别(困难),参考情绪的分层特征。为了验证我们模型的性能,在两个公共数据集中进行了广泛的实验:种子-46和多模态生理情绪数据库(MPED)。
translated by 谷歌翻译
基于电动机图像(MI)的脑电脑界面(BCIS)允许通过解码神经生理现象来控制几种应用,这些现象通常通过使用非侵入性技术被脑电图(EEG)记录。尽管在基于MI的BCI的进展方面很大,但脑电图有特定于受试者和各种变化随时间。这些问题指出了提高分类绩效的重大挑战,特别是在独立的方式。为了克服这些挑战,我们提出了Min2Net,这是一个新的端到端多任务学习来解决这项任务。我们将深度度量学习集成到多任务AutoEncoder中,以从脑电图中学习紧凑且识别的潜在表示,并同时执行分类。这种方法降低了预处理的复杂性,导致EEG分类的显着性能改善。实验结果以本语独立的方式表明,MIN2Net优于最先进的技术,在SMR-BCI和OpenBMI数据集中分别实现了6.72%的F1分数提高,以及2.23%。我们证明MIN2NET在潜在代表中提高了歧视信息。本研究表明使用此模型的可能性和实用性为新用户开发基于MI的BCI应用,而无需校准。
translated by 谷歌翻译
监督深度学习方法的最新进展是使用面部视频实现基于光电觉描绘的生理信号的远程测量。然而,这些监督方法的性能取决于大标记数据的可用性。作为自我监督方法的对比学习,最近通过最大化不同增强视图之间的互信息来实现学习代表数据特征的最先进的性能。然而,用于对比学学习的现有数据增强技术不是设计用于从视频中学习来自视频的生理信号,并且当存在复杂的噪声和微妙和微妙和周期性的颜色或视频帧之间的形状变化时,通常会失败。为了解决这些问题,我们为远程生理信号表示学习提供了一种新的自我监督的时空学习框架,其中缺乏标记的培训数据。首先,我们提出了一种基于地标的空间增强,其基于Shafer Dichromatic反射模型将面部分成几个信息部件,以表征微妙的肤色波动。我们还制定了一种基于稀疏的时间增强,利用奈奎斯特 - 香农采样定理来通过建模生理信号特征有效地捕获周期性的时间变化。此外,我们介绍了一个受限制的时空损失,为增强视频剪辑产生伪标签。它用于调节训练过程并处理复杂的噪声。我们在3个公共数据集中评估了我们的框架,并展示了比其他自我监督方法的卓越表现,并与最先进的监督方法相比实现了竞争精度。
translated by 谷歌翻译
最近,自我监督的表示学习(SSRL)在计算机视觉,语音,自然语言处理(NLP)以及最近的其他类型的模式(包括传感器的时间序列)中引起了很多关注。自我监督学习的普及是由传统模型通常需要大量通知数据进行培训的事实所驱动的。获取带注释的数据可能是一个困难且昂贵的过程。已经引入了自我监督的方法,以通过使用从原始数据自由获得的监督信号对模型进行判别预训练来提高训练数据的效率。与现有的对SSRL的评论不同,该评论旨在以单一模式为重点介绍CV或NLP领域的方法,我们旨在为时间数据提供对多模式自我监督学习方法的首次全面审查。为此,我们1)提供现有SSRL方法的全面分类,2)通过定义SSRL框架的关键组件来引入通用管道,3)根据其目标功能,网络架构和潜在应用程序,潜在的应用程序,潜在的应用程序,比较现有模型, 4)查看每个类别和各种方式中的现有多模式技术。最后,我们提出了现有的弱点和未来的机会。我们认为,我们的工作对使用多模式和/或时间数据的域中SSRL的要求有了一个观点
translated by 谷歌翻译
Previous work on action representation learning focused on global representations for short video clips. In contrast, many practical applications, such as video alignment, strongly demand learning the intensive representation of long videos. In this paper, we introduce a new framework of contrastive action representation learning (CARL) to learn frame-wise action representation in a self-supervised or weakly-supervised manner, especially for long videos. Specifically, we introduce a simple but effective video encoder that considers both spatial and temporal context by combining convolution and transformer. Inspired by the recent massive progress in self-supervised learning, we propose a new sequence contrast loss (SCL) applied to two related views obtained by expanding a series of spatio-temporal data in two versions. One is the self-supervised version that optimizes embedding space by minimizing KL-divergence between sequence similarity of two augmented views and prior Gaussian distribution of timestamp distance. The other is the weakly-supervised version that builds more sample pairs among videos using video-level labels by dynamic time wrapping (DTW). Experiments on FineGym, PennAction, and Pouring datasets show that our method outperforms previous state-of-the-art by a large margin for downstream fine-grained action classification and even faster inference. Surprisingly, although without training on paired videos like in previous works, our self-supervised version also shows outstanding performance in video alignment and fine-grained frame retrieval tasks.
translated by 谷歌翻译
Neuropsychological studies suggest that co-operative activities among different brain functional areas drive high-level cognitive processes. To learn the brain activities within and among different functional areas of the brain, we propose LGGNet, a novel neurologically inspired graph neural network, to learn local-global-graph representations of electroencephalography (EEG) for Brain-Computer Interface (BCI). The input layer of LGGNet comprises a series of temporal convolutions with multi-scale 1D convolutional kernels and kernel-level attentive fusion. It captures temporal dynamics of EEG which then serves as input to the proposed local and global graph-filtering layers. Using a defined neurophysiologically meaningful set of local and global graphs, LGGNet models the complex relations within and among functional areas of the brain. Under the robust nested cross-validation settings, the proposed method is evaluated on three publicly available datasets for four types of cognitive classification tasks, namely, the attention, fatigue, emotion, and preference classification tasks. LGGNet is compared with state-of-the-art methods, such as DeepConvNet, EEGNet, R2G-STNN, TSception, RGNN, AMCNN-DGCN, HRNN and GraphNet. The results show that LGGNet outperforms these methods, and the improvements are statistically significant (p<0.05) in most cases. The results show that bringing neuroscience prior knowledge into neural network design yields an improvement of classification performance. The source code can be found at https://github.com/yi-ding-cs/LGG
translated by 谷歌翻译
工作记忆(WM)表示在脑海中存储的信息,是人类认知领域的一个基本研究主题。可以监测大脑的电活动的脑电图(EEG)已被广泛用于测量WM的水平。但是,关键的挑战之一是个体差异可能会导致无效的结果,尤其是当既定模型符合陌生主题时。在这项工作中,我们提出了一个具有空间注意力(CS-DASA)的跨主题深层适应模型,以概括跨科目的工作负载分类。首先,我们将EEG时间序列转换为包含空间,光谱和时间信息的多帧EEG图像。首先,CS-DASA中的主题共享模块从源和目标主题中接收多帧的EEG图像数据,并学习了共同的特征表示。然后,在特定于主题的模块中,实现了最大平均差异,以测量重现的内核希尔伯特空间中的域分布差异,这可以为域适应增加有效的罚款损失。此外,采用主题对象的空间注意机制专注于目标图像数据的判别空间特征。在包含13个受试者的公共WM EEG数据集上进行的实验表明,所提出的模型能够达到比现有最新方法更好的性能。
translated by 谷歌翻译
我们介绍了一种对比视频表示方法,它使用课程学习在对比度培训中施加动态抽样策略。更具体地说,Concur以易于正面样本(在时间上和语义上相似的剪辑上)开始对比度训练,并且随着训练的进行,它会有效地提高时间跨度,从而有效地采样了硬质阳性(时间为时间和语义上不同)。为了学习更好的上下文感知表示形式,我们还提出了一个辅助任务,以预测积极剪辑之间的时间距离。我们对两个流行的动作识别数据集进行了广泛的实验,即UCF101和HMDB51,我们提出的方法在两项视频动作识别和视频检索的基准任务上实现了最新的性能。我们通过使用R(2+1)D和C3D编码器以及对Kinetics-400和Kinetics-200200数据集的R(2+1)D和C3D编码器以及预训练的影响来探讨编码器骨架和预训练策略的影响。此外,一项详细的消融研究显示了我们提出的方法的每个组成部分的有效性。
translated by 谷歌翻译