天体物理光曲线尤其具有挑战性的数据对象,因为噪音的强度和种类污染了它们。然而,尽管可用的光曲线有天文数量,但用于处理它们的大多数算法仍在按样本基础上运行。为了解决这个问题,我们提出了一个简单的变压器模型 - 称为Denoising时间序列变压器(DTST) - 并表明它在接受掩盖目标的训练时,在时间序列数据集中删除噪声和离群值,即使没有干净的目标也是如此可用。此外,自我发作的使用将丰富和说明性的查询带入学习的表示形式。我们介绍了从过境外行空间卫星(TESS)的真实恒星光曲线进行的实验,与传统的Denoising技术相比,我们的方法的优势。
translated by 谷歌翻译
从自然语言嵌入中汲取灵感,我们提出了Astromer,这是一种基于变压器的模型,以创建光曲线的表示。Astromer接受了数以百万计的Macho R波段样品的培训,并且很容易对其进行微调以匹配与下游任务相关的特定域。例如,本文显示了使用预训练的表示形式对变量恒星进行分类的好处。此外,我们还提供了一个Python库,其中包括这项工作中使用的所有功能。我们的图书馆包括预先培训的模型,可用于增强深度学习模型的性能,减少计算资源,同时获得最新的结果。
translated by 谷歌翻译
多元时间序列(MTS)预测在广泛的应用中起着至关重要的作用。最近,时空图神经网络(STGNN)已成为越来越流行的MTS预测方法。 STGNN通过图神经网络和顺序模型共同对MTS的空间和时间模式进行建模,从而显着提高了预测准确性。但是受模型复杂性的限制,大多数STGNN仅考虑短期历史MTS数据,例如过去一个小时的数据。但是,需要根据长期的历史MTS数据来分析时间序列的模式及其之间的依赖关系(即时间和空间模式)。为了解决这个问题,我们提出了一个新颖的框架,其中STGNN通过可扩展的时间序列预训练模型(步骤)增强。具体而言,我们设计了一个预训练模型,以从非常长期的历史时间序列(例如,过去两周)中有效地学习时间模式并生成细分级表示。这些表示为短期时间序列输入到STGNN提供了上下文信息,并促进了时间序列之间的建模依赖关系。三个公共现实世界数据集的实验表明,我们的框架能够显着增强下游STGNN,并且我们的训练前模型可恰当地捕获时间模式。
translated by 谷歌翻译
神经科学家和神经工具长期以来一直依赖多电极神经记录来研究大脑。但是,在典型的实验中,许多因素损坏了来自单个电极的神经记录,包括电噪声,运动伪像和制造错误。当前,普遍的做法是丢弃这些损坏的录音,减少已经有限的数据,难以收集。为了应对这一挑战,我们提出了深层神经插补(DNI),这是一个从跨空间位置,天和参与者中收集的数据中学习的框架,以从电极中恢复缺失值。我们通过线性最近的邻居方法和两个深层生成自动编码器探索我们的框架,证明了DNI的灵活性。一位深度自动编码器单独建模参与者,而另一个则扩展了该体系结构以共同建模。我们评估了12名用多电极内电图阵列植入的人类参与者的模型;参与者没有明确的任务,并且在数百个记录小时内自然行为。我们表明,DNI不仅恢复了时间序列,还可以恢复频率内容,并通过在科学相关的下游神经解码任务上恢复出色的性能来进一步确立DNI的实际价值。
translated by 谷歌翻译
缺失值的插补代表了许多现实世界数据分析管道的重要障碍。在这里,我们专注于时间序列数据,并提出SSSD,这是一个依赖两种新兴技术的插图模型,(条件)扩散模型是最先进的生成模型,结构化状态空间模型作为内部模型体系结构,是特别适合捕获时间序列数据中的长期依赖性。我们证明,在广泛的数据集和不同的丢失方案(包括具有挑战性的停电失误的情况)上,SSSD匹配甚至超过了最先进的概率插补和预测性能,在这些情况下,先前的方法未能提供有意义的结果。
translated by 谷歌翻译
时间变化数量的估计是医疗保健和金融等领域决策的基本组成部分。但是,此类估计值的实际实用性受到它们量化预测不确定性的准确程度的限制。在这项工作中,我们解决了估计高维多元时间序列的联合预测分布的问题。我们提出了一种基于变压器体系结构的多功能方法,该方法使用基于注意力的解码器估算关节分布,该解码器可被学会模仿非参数Copulas的性质。最终的模型具有多种理想的属性:它可以扩展到数百个时间序列,支持预测和插值,可以处理不规则和不均匀的采样数据,并且可以在训练过程中无缝地适应丢失的数据。我们从经验上证明了这些属性,并表明我们的模型在多个现实世界数据集上产生了最新的预测。
translated by 谷歌翻译
为了提高风能生产的安全性和可靠性,短期预测已成为最重要的。这项研究的重点是挪威大陆架的多步时时空风速预测。图形神经网络(GNN)体系结构用于提取空间依赖性,具有不同的更新功能以学习时间相关性。这些更新功能是使用不同的神经网络体系结构实现的。近年来,一种这样的架构,即变压器,在序列建模中变得越来越流行。已经提出了对原始体系结构的各种改动,以更好地促进时间序列预测,本研究的重点是告密者Logsparse Transformer和AutoFormer。这是第一次将logsparse变压器和自动形态应用于风预测,并且第一次以任何一种或告密者的形式在时空设置以进行风向预测。通过比较时空长的短期记忆(LSTM)和多层感知器(MLP)模型,该研究表明,使用改变的变压器体系结构作为GNN中更新功能的模型能够超越这些功能。此外,我们提出了快速的傅立叶变压器(FFTRANSFORMER),该变压器是基于信号分解的新型变压器体系结构,由两个单独的流组成,分别分析趋势和周期性成分。发现FFTRANSFORMER和自动成型器可在10分钟和1小时的预测中取得优异的结果,而FFTRANSFORMER显着优于所有其他模型的4小时预测。最后,通过改变图表表示的连通性程度,该研究明确说明了所有模型如何利用空间依赖性来改善局部短期风速预测。
translated by 谷歌翻译
Future surveys such as the Legacy Survey of Space and Time (LSST) of the Vera C. Rubin Observatory will observe an order of magnitude more astrophysical transient events than any previous survey before. With this deluge of photometric data, it will be impossible for all such events to be classified by humans alone. Recent efforts have sought to leverage machine learning methods to tackle the challenge of astronomical transient classification, with ever improving success. Transformers are a recently developed deep learning architecture, first proposed for natural language processing, that have shown a great deal of recent success. In this work we develop a new transformer architecture, which uses multi-head self attention at its core, for general multi-variate time-series data. Furthermore, the proposed time-series transformer architecture supports the inclusion of an arbitrary number of additional features, while also offering interpretability. We apply the time-series transformer to the task of photometric classification, minimising the reliance of expert domain knowledge for feature selection, while achieving results comparable to state-of-the-art photometric classification methods. We achieve a logarithmic-loss of 0.507 on imbalanced data in a representative setting using data from the Photometric LSST Astronomical Time-Series Classification Challenge (PLAsTiCC). Moreover, we achieve a micro-averaged receiver operating characteristic area under curve of 0.98 and micro-averaged precision-recall area under curve of 0.87.
translated by 谷歌翻译
Current self-supervised learning algorithms are often modality-specific and require large amounts of computational resources. To address these issues, we increase the training efficiency of data2vec, a learning objective that generalizes across several modalities. We do not encode masked tokens, use a fast convolutional decoder and amortize the effort to build teacher representations. data2vec 2.0 benefits from the rich contextualized target representations introduced in data2vec which enable a fast self-supervised learner. Experiments on ImageNet-1K image classification show that data2vec 2.0 matches the accuracy of Masked Autoencoders in 16.4x lower pre-training time, on Librispeech speech recognition it performs as well as wav2vec 2.0 in 10.6x less time, and on GLUE natural language understanding it matches a retrained RoBERTa model in half the time. Trading some speed for accuracy results in ImageNet-1K top-1 accuracy of 86.8\% with a ViT-L model trained for 150 epochs.
translated by 谷歌翻译
由于耗时的光曲线计算和高维参数空间中的病理可能性景观,通过基于标准的采样方法对二进制微透镜曲线进行建模可能具有挑战性。在这项工作中,我们提出了魔术,这是一个机器学习框架,可有效,准确地推断出具有现实数据质量的二进制事件的微透镜参数。在魔术中,将二进制微透镜参数分为两组,并通过不同的神经网络分别推断。魔术的关键特征是引入神经控制的微分方程,该方程提供了通过不规则采样和较大数据差距处理光曲线的能力。基于模拟的光曲线,我们表明魔术可以在二进制质量比和分离上达到几%的分数不确定性。我们还在真实的微透镜事件中测试魔术。即使引入了较大的数据差距,魔术也能够找到退化的解决方案。由于不规则的采样在天文学调查中很常见,因此我们的方法还对涉及时间序列的其他研究具有影响。
translated by 谷歌翻译
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.
translated by 谷歌翻译
The promise of Mobile Health (mHealth) is the ability to use wearable sensors to monitor participant physiology at high frequencies during daily life to enable temporally-precise health interventions. However, a major challenge is frequent missing data. Despite a rich imputation literature, existing techniques are ineffective for the pulsative signals which comprise many mHealth applications, and a lack of available datasets has stymied progress. We address this gap with PulseImpute, the first large-scale pulsative signal imputation challenge which includes realistic mHealth missingness models, an extensive set of baselines, and clinically-relevant downstream tasks. Our baseline models include a novel transformer-based architecture designed to exploit the structure of pulsative signals. We hope that PulseImpute will enable the ML community to tackle this significant and challenging task.
translated by 谷歌翻译
时间序列(TS)异常检测(AD)在各种应用中起重要作用,例如,金融和医疗保健监测中的欺诈检测。由于异常的本质上不可预测和高度不同,并且在历史数据中缺乏异常标签,而广告问题通常被制定为无监督的学习问题。现有解决方案的性能往往不令人满意,尤其是数据稀缺方案。为了解决这个问题,我们提出了一种新颖的自我监督的广告中的时间序列学习技术,即\ EMPH {DeepFib}。我们将问题模型为a \ emph {填写空白}游戏,通过屏蔽TS中的某些元素并将其抵御其余部分。考虑到TS数据中的两个共同的异常形状(点或序列异常值),我们实施了两个具有许多自我产生的训练样本的掩蔽策略。相应的自我估算网络可以提取比现有的广告解决方案更强大的时间关系,并有效地促进识别两种类型的异常。对于连续异常值,我们还提出了一种异常的本地化算法,可大大减少广告错误。各种现实世界TS数据集的实验表明,DeepFib优先于最先进的方法,通过大幅度,实现F1分数的高达65.2 \%$ 65.2 \%。
translated by 谷歌翻译
预训练在机器学习的不同领域表现出成功,例如计算机视觉,自然语言处理(NLP)和医学成像。但是,尚未完全探索用于临床数据分析。记录了大量的临床记录,但是对于在小型医院收集的数据或处理罕见疾病的数据仍可能稀缺数据和标签。在这种情况下,对较大的未标记临床数据进行预训练可以提高性能。在本文中,我们提出了专为异质的多模式临床数据设计的新型无监督的预训练技术,用于通过蒙版语言建模(MLM)启发的患者预测,通过利用对人群图的深度学习来启发。为此,我们进一步提出了一个基于图形转换器的网络,该网络旨在处理异质临床数据。通过将基于掩盖的预训练与基于变压器的网络相结合,我们将基于掩盖的其他域中训练的成功转化为异质临床数据。我们使用三个医学数据集Tadpole,Mimic-III和一个败血症预测数据集,在自我监督和转移学习设置中展示了我们的预训练方法的好处。我们发现,我们提出的培训方法有助于对患者和人群水平的数据进行建模,并提高所有数据集中不同微调任务的性能。
translated by 谷歌翻译
缺少价值是传感器中非常普遍且不可避免的问题,研究人员已经进行了许多尝试丢失价值的尝试,尤其是在深度学习模型中。但是,对于实际传感器数据,很少考虑特定的数据分布和数据周期,因此很难为不同传感器选择适当的评估索引和模型。为了解决这个问题,本研究提出了一个基于深度学习的多阶段插补框架,并适应缺失价值插补。该模型提出了数据分布的低阶和高阶统计数据的混合测量指数,以及对数据插补性能指标的新观点,该指标比传统的平均平方误差更适应性和有效。多阶段的归档策略和动态数据长度被引入数据周期的插补过程中。对不同类型的传感器数据的实验结果表明,多阶段的归合策略和混合指数是优越的,并且缺失价值插补的效果在一定程度上得到了改善,尤其是对于大段插补问题。代码和实验结果已上传到GitHub。
translated by 谷歌翻译
Transfer learning, where a model is first pre-trained on a data-rich task before being finetuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts all text-based language problems into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled data sets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new "Colossal Clean Crawled Corpus", we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our data set, pre-trained models, and code.
translated by 谷歌翻译
明显大小的时间变化(称为光曲线)是望远镜在长时间内捕获的感兴趣的观察统计。光曲线提供了空间域意识(SDA)目标(例如对象识别或姿势估计)作为潜在变量推理问题等目标的探索。与较高的精确仪器相比,来自货架上商业架子(COTS)摄像机的地面观测仍然很便宜,但是,有限的传感器可用性与嘈杂的观察结果相结合,可能会产生可能难以建模的gappy时间序列数据。这些外部因素混淆了对光曲线的自动开发,这使光曲线预测和外推成为应用的关键问题。传统上,使用基于扩散或基于示例的方法解决了图像或时间序列的完成问题。最近,由于学习复杂的非线性嵌入方面的经验成功,深度神经网络(DNNS)已成为首选工具。但是,DNN通常需要大量的培训数据,而这些数据不一定在查看单个卫星的光曲线的独特功能时可用。在本文中,我们提出了一种新的方法,可以使用高斯工艺(GPS)预测光曲线的缺失和未来数据点。 GPS是非线性概率模型,可推断后验分布在功能上并自然量化不确定性。但是,GP推理和培训的立方缩放是其在应用中采用的主要障碍。特别是,单个光曲线可以具有数十万个观测值,这远远超出了单个机器上常规GP的实际实现极限。因此,我们采用MUYGP,这是一种可扩展的框架,用于使用最近的邻居稀疏和局部交叉验证的GP模型的超参数估计。 muygps ...
translated by 谷歌翻译
多元时间序列(MTS)是与许多实际应用有关的通用数据类型。但是,MTS缺少数据问题,这会导致下游任务的降解甚至崩溃,例如预测和分类。当遇到多个下游任务时,并发丢失的数据处理过程不可避免地会引起偏见的估计和冗余训练问题。本文提出了普遍适用的MTS预培训模型DBT-DMAE,以征服上述障碍。首先,缺少表示模块是通过引入动态位置嵌入和随机掩蔽处理来设计的,以表征缺失的症状。其次,我们提出了一种自动编码器结构,以利用称为Dynamic-Bixirectional-TCN的改善的TCN结构作为基本单元,以获取通用的MTS编码表示,该结构集成了动态内核和时流的技巧来有效地绘制时间特征。最后,建立了整体进食策略,以确保对整个模型进行适当的培训。比较实验结果表明,DBT-DMAE在六个现实世界数据集和两个不同下游任务中的其他最新方法优于其他最先进的方法。此外,提供消融和解释性实验,以验证DBT-DMAE子结构的有效性。
translated by 谷歌翻译
在本文中,我们介绍了蒙面的多步多变量预测(MMMF),这是一个新颖而普遍的自我监督学习框架,用于时间序列预测,并提供已知的未来信息。在许多真实世界的预测情况下,已知一些未来的信息,例如,在进行短期到中期的电力需求预测或进行飞机出发预测时的油价预测时,天气信息。现有的机器学习预测框架可以分为(1)基于样本的方法,在此方法中进行每个预测,以及(2)时间序列回归方法,其中未来信息未完全合并。为了克服现有方法的局限性,我们提出了MMMF,这是一个培训能够生成一系列输出的神经网络模型的框架,将过去的时间信息和有关未来的已知信息结合在一起,以做出更好的预测。实验在两个现实世界数据集上进行(1)中期电力需求预测,以及(2)前两个月的飞行偏离预测。他们表明,所提出的MMMF框架的表现不仅优于基于样本的方法,而且具有与完全相同的基本模型的现有时间序列预测模型。此外,一旦通过MMMF进行了神经网络模型,其推理速度与接受传统回归配方训练的相同模型的推理速度相似,从而使MMMF成为现有回归训练的时间序列的更好替代品,如果有一些可用的未来,信息。
translated by 谷歌翻译
While the Transformer architecture has become the de-facto standard for natural language processing tasks, its applications to computer vision remain limited. In vision, attention is either applied in conjunction with convolutional networks, or used to replace certain components of convolutional networks while keeping their overall structure in place. We show that this reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks. When pre-trained on large amounts of data and transferred to multiple mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring substantially fewer computational resources to train. 1
translated by 谷歌翻译