缺失值的插补代表了许多现实世界数据分析管道的重要障碍。在这里,我们专注于时间序列数据,并提出SSSD,这是一个依赖两种新兴技术的插图模型,(条件)扩散模型是最先进的生成模型,结构化状态空间模型作为内部模型体系结构,是特别适合捕获时间序列数据中的长期依赖性。我们证明,在广泛的数据集和不同的丢失方案(包括具有挑战性的停电失误的情况)上,SSSD匹配甚至超过了最先进的概率插补和预测性能,在这些情况下,先前的方法未能提供有意义的结果。
translated by 谷歌翻译
一般的ML应用程序中缺少数据方案非常常见,时间序列/序列应用也不例外。本文涉及基于新的复发神经网络(RNN)解决方案,用于丢失数据下的序列预测。我们的方法与所有现有方法不同。它试图直接编码数据中的丢失模式,而无需在模型构建之前或期间尝试将数据归为数据。我们的编码是无损的,并实现了压缩。它可以用于序列分类和预测。在存在可能的外源输入的情况下,我们将重点放在多步预测的一般背景下进行预测。特别是,我们为此提出了编码器码头(SEQ2SEQ)RNN的新型变体。这里的编码器采用上述模式编码,而在具有不同结构的解码器中,多个变体是可行的。我们通过对单个和多个序列(实际)数据集的多个实验来证明我们提出的体系结构的实用性。我们考虑两种情况,其中(i)数据自然缺少,并且(ii)数据被合成掩盖。
translated by 谷歌翻译
我们在多变量时间序列预测(MTSF)的域中制定了一个新的推理任务,称为变量子集预报(VSF),其中仅在推理过程中可用一小部分变量子集。由于长期数据丢失(例如,传感器故障)或列车 /测试之间的高 - >低资源域移动,因此在推理过程中没有变量。据我们所知,在文献中尚未研究MTSF模型在存在此类故障的情况下的稳健性。通过广泛的评估,我们首先表明,在VSF设置中,最新方法的性能显着降低。我们提出了一种非参数包装技术,该技术可以应用于任何现有的预测模型。通过在4个数据集和5个预测模型的系统实验中,我们表明我们的技术能够恢复模型的接近95 \%性能,即使仅存在15 \%的原始变量。
translated by 谷歌翻译
基于预测方法的深度学习已成为时间序列预测或预测的许多应用中的首选方法,通常通常优于其他方法。因此,在过去的几年中,这些方法现在在大规模的工业预测应用中无处不在,并且一直在预测竞赛(例如M4和M5)中排名最佳。这种实践上的成功进一步提高了学术兴趣,以理解和改善深厚的预测方法。在本文中,我们提供了该领域的介绍和概述:我们为深入预测的重要构建块提出了一定深度的深入预测;随后,我们使用这些构建块,调查了最近的深度预测文献的广度。
translated by 谷歌翻译
Temporal data like time series are often observed at irregular intervals which is a challenging setting for existing machine learning methods. To tackle this problem, we view such data as samples from some underlying continuous function. We then define a diffusion-based generative model that adds noise from a predefined stochastic process while preserving the continuity of the resulting underlying function. A neural network is trained to reverse this process which allows us to sample new realizations from the learned distribution. We define suitable stochastic processes as noise sources and introduce novel denoising and score-matching models on processes. Further, we show how to apply this approach to the multivariate probabilistic forecasting and imputation tasks. Through our extensive experiments, we demonstrate that our method outperforms previous models on synthetic and real-world datasets.
translated by 谷歌翻译
时间序列数据在现实世界应用中无处不在。但是,最常见的问题之一是,时间序列数据可能会通过数据收集过程的固有性质丢失值。因此,必须从多元(相关)时间序列数据中推出缺失值,这对于改善预测性能的同时做出准确的数据驱动决策至关重要。插补的常规工作简单地删除缺失值或基于平均/零填充它们。尽管基于深层神经网络的最新作品显示出了显着的结果,但它们仍然有一个限制来捕获多元时间序列的复杂生成过程。在本文中,我们提出了一种用于多变量时间序列数据的新型插补方法,称为sting(使用GAN基于自我注意的时间序列插补网络)。我们利用生成的对抗网络和双向复发性神经网络来学习时间序列的潜在表示。此外,我们引入了一种新型的注意机制,以捕获整个序列的加权相关性,并避免无关序列带来的潜在偏见。三个现实世界数据集的实验结果表明,刺痛在插补精度以及具有估算值的下游任务方面优于现有的最新方法。
translated by 谷歌翻译
扩散模型是一类深入生成模型,在具有密集理论建立的各种任务上显示出令人印象深刻的结果。尽管与其他最先进的模型相比,扩散模型的样本合成质量和多样性令人印象深刻,但它们仍然遭受了昂贵的抽样程序和次优可能的估计。最近的研究表明,对提高扩散模型的性能的热情非常热情。在本文中,我们对扩散模型的现有变体进行了首次全面综述。具体而言,我们提供了扩散模型的第一个分类法,并将它们分类为三种类型,即采样加速增强,可能性最大化的增强和数据将来增强。我们还详细介绍了其他五个生成模型(即变异自动编码器,生成对抗网络,正常流量,自动回归模型和基于能量的模型),并阐明扩散模型与这些生成模型之间的连接。然后,我们对扩散模型的应用进行彻底研究,包括计算机视觉,自然语言处理,波形信号处理,多模式建模,分子图生成,时间序列建模和对抗性纯化。此外,我们提出了与这种生成模型的发展有关的新观点。
translated by 谷歌翻译
医疗数据集通常由噪声和缺失数据损坏。这些缺失的模式通常被认为是完全随机的,而是在医学场景中,现实是,这些模式由于在一些时间或数据被收集的不alaled的不均匀方式中被收集的传感器而发生突发。本文建议使用异构数据类型和使用顺序变化自动码器(VAES)来模拟医疗数据记录和突发的缺失数据。特别是,我们提出了一种新的方法,SHI-VAE,其扩展了VAE的能力,使VAE的顺序数据流缺失了观察。我们将我们的模型与精密护理单元数据库(ICU)中的最先进的解决方案进行比较和被动人类监测的数据集。此外,我们发现诸如RMSE的标准错误指标不能得出足够的决定性,以评估时间模型,并包括在我们分析地面真理和算中信号之间的互相关。我们表明Shi-VAE在使用两个指标方面实现了最佳性能,而不是GP-VAE模型的计算复杂性较低,这是用于医疗记录的最先进的方法。
translated by 谷歌翻译
时间变化数量的估计是医疗保健和金融等领域决策的基本组成部分。但是,此类估计值的实际实用性受到它们量化预测不确定性的准确程度的限制。在这项工作中,我们解决了估计高维多元时间序列的联合预测分布的问题。我们提出了一种基于变压器体系结构的多功能方法,该方法使用基于注意力的解码器估算关节分布,该解码器可被学会模仿非参数Copulas的性质。最终的模型具有多种理想的属性:它可以扩展到数百个时间序列,支持预测和插值,可以处理不规则和不均匀的采样数据,并且可以在训练过程中无缝地适应丢失的数据。我们从经验上证明了这些属性,并表明我们的模型在多个现实世界数据集上产生了最新的预测。
translated by 谷歌翻译
从语音音频中删除背景噪音一直是大量研究和努力的主题,尤其是由于虚拟沟通和业余声音录制的兴起,近年来。然而,背景噪声并不是唯一可以防止可理解性的不愉快干扰:混响,剪裁,编解码器工件,有问题的均衡,有限的带宽或不一致的响度同样令人不安且无处不在。在这项工作中,我们建议将言语增强的任务视为一项整体努力,并提出了一种普遍的语音增强系统,同时解决了55种不同的扭曲。我们的方法由一种使用基于得分的扩散的生成模型以及一个多分辨率调节网络,该网络通过混合密度网络进行增强。我们表明,这种方法在专家听众执行的主观测试中大大优于艺术状态。我们还表明,尽管没有考虑任何特定的快速采样策略,但它仅通过4-8个扩散步骤就可以实现竞争性的目标得分。我们希望我们的方法论和技术贡献都鼓励研究人员和实践者采用普遍的语音增强方法,可能将其作为一项生成任务。
translated by 谷歌翻译
地震的预测和预测有很长的时间,在某些情况下有肮脏的历史,但是最近的工作重新点燃了基于预警的进步,诱发地震性的危害评估以及对实验室地震的成功预测。在实验室中,摩擦滑移事件为地震和地震周期提供了类似物。 Labquakes是机器学习(ML)的理想目标,因为它们可以在受控条件下以长序列生产。最近的作品表明,ML可以使用断层区的声学排放来预测实验室的几个方面。在这里,我们概括了这些结果,并探索了Labquake预测和自动回归(AR)预测的深度学习(DL)方法。 DL改善了现有的Labquake预测方法。 AR方法允许通过迭代预测在未来的视野中进行预测。我们证明,基于长期任期内存(LSTM)和卷积神经网络的DL模型可以预测在几种条件下实验室,并且可以以忠诚度预测断层区应力,证实声能是断层区应力的指纹。我们还预测了实验室的失败开始(TTSF)和失败结束(TTEF)的时间。有趣的是,在所有地震循环中都可以成功预测TTEF,而TTSF的预测随preseismisic断层蠕变的数量而变化。我们报告了使用三个序列建模框架:LSTM,时间卷积网络和变压器网络预测故障应力演变的AR方法。 AR预测与现有的预测模型不同,该模型仅在特定时间预测目标变量。超出单个地震周期的预测结果有限,但令人鼓舞。我们的ML/DL模型优于最先进的模型,我们的自回归模型代表了一个新颖的框架,可以增强当前的地震预测方法。
translated by 谷歌翻译
The promise of Mobile Health (mHealth) is the ability to use wearable sensors to monitor participant physiology at high frequencies during daily life to enable temporally-precise health interventions. However, a major challenge is frequent missing data. Despite a rich imputation literature, existing techniques are ineffective for the pulsative signals which comprise many mHealth applications, and a lack of available datasets has stymied progress. We address this gap with PulseImpute, the first large-scale pulsative signal imputation challenge which includes realistic mHealth missingness models, an extensive set of baselines, and clinically-relevant downstream tasks. Our baseline models include a novel transformer-based architecture designed to exploit the structure of pulsative signals. We hope that PulseImpute will enable the ML community to tackle this significant and challenging task.
translated by 谷歌翻译
缺少价值是传感器中非常普遍且不可避免的问题,研究人员已经进行了许多尝试丢失价值的尝试,尤其是在深度学习模型中。但是,对于实际传感器数据,很少考虑特定的数据分布和数据周期,因此很难为不同传感器选择适当的评估索引和模型。为了解决这个问题,本研究提出了一个基于深度学习的多阶段插补框架,并适应缺失价值插补。该模型提出了数据分布的低阶和高阶统计数据的混合测量指数,以及对数据插补性能指标的新观点,该指标比传统的平均平方误差更适应性和有效。多阶段的归档策略和动态数据长度被引入数据周期的插补过程中。对不同类型的传感器数据的实验结果表明,多阶段的归合策略和混合指数是优越的,并且缺失价值插补的效果在一定程度上得到了改善,尤其是对于大段插补问题。代码和实验结果已上传到GitHub。
translated by 谷歌翻译
我们都取决于流动性,车辆运输会影响我们大多数人的日常生活。因此,预测道路网络中流量状态的能力是一项重要的功能和具有挑战性的任务。流量数据通常是从部署在道路网络中的传感器获得的。关于时空图神经网络的最新建议通过将流量数据建模为扩散过程,在交通数据中建模复杂的时空相关性方面取得了巨大进展。但是,直观地,流量数据包含两种不同类型的隐藏时间序列信号,即扩散信号和固有信号。不幸的是,几乎所有以前的作品都将交通信号完全视为扩散的结果,同时忽略了固有的信号,这会对模型性能产生负面影响。为了提高建模性能,我们提出了一种新型的脱钩时空框架(DSTF),该框架以数据驱动的方式将扩散和固有的交通信息分开,其中包含独特的估计门和残差分解机制。分离的信号随后可以通过扩散和固有模块分别处理。此外,我们提出了DSTF的实例化,分离的动态时空图神经网络(D2STGNN),可捕获时空相关性,还具有动态图学习模块,该模块针对学习流量网络动态特征的学习。使用四个现实世界流量数据集进行的广泛实验表明,该框架能够推进最先进的框架。
translated by 谷歌翻译
序列建模的一个中心目标是设计一个单个原则模型,该模型可以解决各种方式和任务,尤其是在远程依赖方面的序列数据。尽管包括RNN,CNN和Transformers在内的传统模型具有用于捕获长期依赖性的专业变体,但它们仍然很难扩展到长时间的10000美元或更多步骤。通过模拟基本状态空间模型(SSM)\(x'(t)= ax(t)= ax(t) + bu(t),y(t)= cx(t) + du(t) + du(t)\ ), and showed that for appropriate choices of the state matrix \( A \), this system could handle long-range dependencies mathematically and empirically.但是,该方法具有过度的计算和内存需求,使其无法作为一般序列建模解决方案。我们根据SSM的新参数化提出了结构化状态空间序列模型(S4),并表明它可以比以前的方法更有效地计算出其理论强度。我们的技术涉及对\(a \)进行低级校正的调节,从而使其对角度稳定,并将SSM降低到库奇内核的精心研究的计算中。 S4在各种既定的基准测试范围内取得了强劲的经验结果,包括(i)在顺序CIFAR-10上的91 \%精度,没有数据增强或辅助损失,与较大的2-D Resnet相当,(ii)实质上关闭。在图像和语言建模任务上与变形金刚的差距,同时在远程竞技场基准的每个任务上执行每一代$ 60 \ times $ $(iii)sota,包括求解所有先前工作的挑战性path-x任务,而所有先前工作的长度为16K,同时与所有竞争对手一样高效。
translated by 谷歌翻译
目的:心电图(ECG)信号通常会遭受噪声干扰,例如基线徘徊。心电图信号的高质量和高保真重建对于诊断心血管疾病具有重要意义。因此,本文提出了一种新型的心电图基线徘徊和降噪技术。方法:我们以特定于心电图信号的条件方式扩展模型,即心电图基线徘徊和噪声去除(Descod-ECG)的基于深度分数的扩散模型。此外,我们部署了一个多拍的平均策略,以改善信号重建。我们在QT数据库和MIT-BIH噪声应力测试数据库上进行了实验,以验证该方法的可行性。采用基线方法进行比较,包括传统的基于数字过滤器和基于深度学习的方法。结果:数量评估结果表明,所提出的方法在四个基于距离的相似性指标(平方距离的总和,最大绝对正方形,根距离的百分比和余弦相似性)上获得了出色的性能,并具有3.771 $ \ pm $ 5.713 au,$ 5.713 au, 0.329 $ \ pm $ 0.258 au,40.527 $ \ pm $ 26.258 \%和0.926 $ \ pm $ 0.087。与最佳基线方法相比,这至少导致了至少20%的总体改进。结论:本文证明了Descod-ECG的最新性能用于ECG噪声,该噪声可以更好地近似真实的数据分布和在极端噪声腐败下较高的稳定性。意义:这项研究是最早扩展基于条件扩散的生成模型以去除ECG噪声的研究之一,并且Descod-ECG具有广泛用于生物医学应用的潜力。
translated by 谷歌翻译
深度学习已被积极应用于预测时间序列,从而导致了大量新的自回归模型体系结构。然而,尽管基于时间指数的模型具有吸引人的属性,例如随着时间的推移是连续信号函数,导致表达平滑,但对它们的关注很少。实际上,尽管基于天真的深度指数模型比基于经典时间指数的模型的手动预定义函数表示表达得多,但由于缺乏电感偏见和时间序列的非平稳性,它们的预测不足以预测。在本文中,我们提出了DeepTime,这是一种基于深度指数的模型,该模型通过元学习公式训练,该公式克服了这些局限性,从而产生了有效而准确的预测模型。对现实世界数据集的广泛实验表明,我们的方法通过最先进的方法实现了竞争成果,并且高效。代码可从https://github.com/salesforce/deeptime获得。
translated by 谷歌翻译
由于动态和复杂的时空依赖性,交通预测具有挑战性。但是,现有方法仍然受到两个关键局限性。首先,许多方法通常使用静态预定义或自适应的空间图来捕获流量系统中动态的时空依赖性,这限制了灵活性,并且仅捕获了整个时间的共享模式,从而导致了次优性能。此外,大多数方法在每个时间步骤中都单独和独立地考虑地面真理与预测之间的绝对误差,这无法维持整体时间序列的全球属性和统计数据,并导致地面真相和预测之间的趋势差异。为此,在本文中,我们提出了一个动态自适应和对抗图卷积网络(DAAGCN),该网络将图形卷积网络(GCN)与生成的对抗网络(GANS)结合在一起,以进行流量预测。具体而言,DAAGCN利用带栅极模块的通用范式将时间变化的嵌入与节点嵌入集成在一起,以生成动态自适应图,以在每个时间步骤中推断空间 - 周期依赖性。然后,设计了两个歧视因子,以维持预测时间序列的全局属性的一致性,并在序列和图形级别上具有地面真相。在四个基准数据集上进行的广泛实验表明,DAAGCN的表现平均比最新的5.05%,3.80%和5.27%在MAE,RMSE和MAPE方面,同时加快收敛性高达9倍。代码可从https://github.com/juyongjiang/daagcn获得。
translated by 谷歌翻译
Methods based on ordinary differential equations (ODEs) are widely used to build generative models of time-series. In addition to high computational overhead due to explicitly computing hidden states recurrence, existing ODE-based models fall short in learning sequence data with sharp transitions - common in many real-world systems - due to numerical challenges during optimization. In this work, we propose LS4, a generative model for sequences with latent variables evolving according to a state space ODE to increase modeling capacity. Inspired by recent deep state space models (S4), we achieve speedups by leveraging a convolutional representation of LS4 which bypasses the explicit evaluation of hidden states. We show that LS4 significantly outperforms previous continuous-time generative models in terms of marginal distribution, classification, and prediction scores on real-world datasets in the Monash Forecasting Repository, and is capable of modeling highly stochastic data with sharp temporal transitions. LS4 sets state-of-the-art for continuous-time latent generative models, with significant improvement of mean squared error and tighter variational lower bounds on irregularly-sampled datasets, while also being x100 faster than other baselines on long sequences.
translated by 谷歌翻译
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.
translated by 谷歌翻译