由于动态和复杂的时空依赖性,交通预测具有挑战性。但是,现有方法仍然受到两个关键局限性。首先,许多方法通常使用静态预定义或自适应的空间图来捕获流量系统中动态的时空依赖性,这限制了灵活性,并且仅捕获了整个时间的共享模式,从而导致了次优性能。此外,大多数方法在每个时间步骤中都单独和独立地考虑地面真理与预测之间的绝对误差,这无法维持整体时间序列的全球属性和统计数据,并导致地面真相和预测之间的趋势差异。为此,在本文中,我们提出了一个动态自适应和对抗图卷积网络(DAAGCN),该网络将图形卷积网络(GCN)与生成的对抗网络(GANS)结合在一起,以进行流量预测。具体而言,DAAGCN利用带栅极模块的通用范式将时间变化的嵌入与节点嵌入集成在一起,以生成动态自适应图,以在每个时间步骤中推断空间 - 周期依赖性。然后,设计了两个歧视因子,以维持预测时间序列的全局属性的一致性,并在序列和图形级别上具有地面真相。在四个基准数据集上进行的广泛实验表明,DAAGCN的表现平均比最新的5.05%,3.80%和5.27%在MAE,RMSE和MAPE方面,同时加快收敛性高达9倍。代码可从https://github.com/juyongjiang/daagcn获得。
translated by 谷歌翻译
多变量时间序列预测是一个具有挑战性的任务,因为数据涉及长期和短期模式的混合,具有变量之间的动态时空依赖性。现有图形神经网络(GNN)通常与预定义的空间图或学习的固定邻接图模拟多变量关系。它限制了GNN的应用,并且无法处理上述挑战。在本文中,我们提出了一种新颖的框架,即静态和动态图形学习 - 神经网络(SDGL)。该模型分别从数据获取静态和动态图形矩阵分别为模型长期和短期模式。开发静态Matric以通过节点嵌入捕获固定的长期关联模式,并利用图规律性来控制学习静态图的质量。为了捕获变量之间的动态依赖性,我们提出了基于改变节点特征和静态节点Embeddings生成时变矩阵的动态图。在该方法中,我们将学习的静态图信息作为感应偏置集成为诱导动态图和局部时空模式更好。广泛的实验是在两个交通数据集中进行,具有额外的结构信息和四个时间序列数据集,这表明我们的方法在几乎所有数据集上实现了最先进的性能。如果纸张被接受,我将在GitHub上打开源代码。
translated by 谷歌翻译
准确的交通预测对于智能城市实现交通控制,路线计划和流动检测至关重要。尽管目前提出了许多时空方法,但这些方法在同步捕获流量数据的时空依赖性方面缺陷。此外,大多数方法忽略了随着流量数据的变化而产生的道路网络节点之间的动态变化相关性。我们建议基于神经网络的时空交互式动态图卷积网络(STIDGCN),以应对上述流量预测的挑战。具体而言,我们提出了一个交互式动态图卷积结构,该结构将序列划分为间隔,并通过交互式学习策略同步捕获流量数据的时空依赖性。交互式学习策略使StidGCN有效地预测。我们还提出了一个新颖的动态图卷积模块,以捕获由图生成器和融合图卷积组成的流量网络中动态变化的相关性。动态图卷积模块可以使用输入流量数据和预定义的图形结构来生成图形结构。然后将其与定义的自适应邻接矩阵融合,以生成动态邻接矩阵,该矩阵填充了预定义的图形结构,并模拟了道路网络中节点之间的动态关联的产生。在四个现实世界流量流数据集上进行的广泛实验表明,StidGCN的表现优于最先进的基线。
translated by 谷歌翻译
最近的研究侧重于制定流量预测作为一种时空图形建模问题。它们通常在每个时间步骤构造静态空间图,然后将每个节点连接在相邻时间步骤之间以构造时空图形。在这样的图形中,不同时间步骤的不同节点之间的相关性未明确地反映,这可以限制图形神经网络的学习能力。同时,这些模型在不同时间步骤中使用相同的邻接矩阵时,忽略节点之间的动态时空相关性。为了克服这些限制,我们提出了一种时空关节图卷积网络(StJGCN),用于交通预测在公路网络上的几个时间上限。具体地,我们在任何两个时间步长之间构造预定的和自适应时空关节图(STJG),这代表了全面和动态的时空相关性。我们进一步设计了STJG上的扩张因果时空关节图卷积层,以捕获与多个范围不同的视角的时空依赖关系。提出了一种多范围注意机制来聚合不同范围的信息。四个公共交通数据集的实验表明,STJGCN是计算的高效和优于11个最先进的基线方法。
translated by 谷歌翻译
Traffic forecasting has attracted widespread attention recently. In reality, traffic data usually contains missing values due to sensor or communication errors. The Spatio-temporal feature in traffic data brings more challenges for processing such missing values, for which the classic techniques (e.g., data imputations) are limited: 1) in temporal axis, the values can be randomly or consecutively missing; 2) in spatial axis, the missing values can happen on one single sensor or on multiple sensors simultaneously. Recent models powered by Graph Neural Networks achieved satisfying performance on traffic forecasting tasks. However, few of them are applicable to such a complex missing-value context. To this end, we propose GCN-M, a Graph Convolutional Network model with the ability to handle the complex missing values in the Spatio-temporal context. Particularly, we jointly model the missing value processing and traffic forecasting tasks, considering both local Spatio-temporal features and global historical patterns in an attention-based memory network. We propose as well a dynamic graph learning module based on the learned local-global features. The experimental results on real-life datasets show the reliability of our proposed method.
translated by 谷歌翻译
交通预测对于新时代智能城市的交通建设至关重要。但是,流量数据的复杂空间和时间依赖性使流量预测极具挑战性。大多数现有的流量预测方法都依赖于预定义的邻接矩阵来对时空依赖性建模。但是,道路交通状态是高度实时的,因此邻接矩阵应随着时间的推移而动态变化。本文介绍了一个新的多空间融合图复发网络(MSTFGRN),以解决上述问题。该网络提出了一种数据驱动的加权邻接矩阵生成方法,以补偿预定义的邻接矩阵未反映的实时空间依赖性。它还通过在不同矩的平行时空关系上执行新的双向时空融合操作来有效地学习隐藏的时空依赖性。最后,通过将全局注意机制集成到时空融合模块中,同时捕获了全局时空依赖性。对四个大型现实世界流量数据集进行的广泛试验表明,与替代基线相比,我们的方法实现了最先进的性能。
translated by 谷歌翻译
交通预测是机器学习领域最受欢迎的时空任务之一。该领域的一种普遍方法是将图形卷积网络和经常性神经网络组合以进行时空处理。竞争激烈,提出了许多新的方法。在本文中,我们介绍了时空图神经控制微分方程(STG-NCDE)的方法。神经控制微分方程(NCDE)是用于处理顺序数据的突破性概念。我们扩展了概念和设计两个NCDES:一个用于时间处理,另一个用于空间处理。之后,我们将它们结合成一个框架。我们用6个基准数据集和20个基线进行实验。STG-NCDE在所有情况下显示最佳准确性,优于非琐碎的边缘的所有20个基线。
translated by 谷歌翻译
交通预测是智能交通系统的问题(ITS),并为个人和公共机构是至关重要的。因此,研究高度重视应对准确预报交通系统的复杂的时空相关性。但是,有两个挑战:1)大多数流量预测研究主要集中在造型相邻传感器的相关性,而忽略远程传感器,例如,商务区有类似的时空模式的相关性; 2)使用静态邻接矩阵中曲线图的卷积网络(GCNs)的现有方法不足以反映在交通系统中的动态空间依赖性。此外,它采用自注意所有的传感器模型动态关联细粒度方法忽略道路网络分层信息,并有二次计算复杂性。在本文中,我们提出了一种新动态多图形卷积递归网络(DMGCRN),以解决上述问题,可以同时距离的空间相关性,结构的空间相关性,和所述时间相关性进行建模。那么,只使用基于距离的曲线图来捕获空间信息从节点是接近距离也构建了一个新潜曲线图,其编码的道路之间的相关性的结构来捕获空间信息从节点在结构上相似。此外,我们在不同的时间将每个传感器的邻居到粗粒区域,并且动态地分配不同的权重的每个区域。同时,我们整合动态多图卷积网络到门控重复单元(GRU)来捕获时间依赖性。三个真实世界的交通数据集大量的实验证明,我们提出的算法优于国家的最先进的基线。
translated by 谷歌翻译
交通预测在智能交通系统中很重要,有利于交通安全,但由于现实世界交通系统中的复杂和动态的时空依赖性,这是非常具有挑战性的。先前的方法使用预定义或学习的静态图来提取空间相关性。但是,基于静态图形的方法无法挖掘交通网络的演变。研究人员随后为每次切片生成动态图形以反映空间相关性的变化,但它们遵循独立建模的时空依赖性的范例,忽略了串行空间影响。在本文中,我们提出了一种新的基于跨时动态图形的深度学习模型,名为CDGNet,用于交通预测。该模型能够通过利用横行动态图来有效地捕获每个时切片和其历史时片之间的串联空间依赖性。同时,我们设计了稀疏横行动态图的浇注机制,符合现实世界中的稀疏空间相关性。此外,我们提出了一种新颖的编码器解码器架构,用于结合基于交叉时间动态图形的GCN,用于多步行量预测。三个现实世界公共交通数据集的实验结果表明CDGNET优于最先进的基线。我们还提供了一种定性研究来分析我们建筑的有效性。
translated by 谷歌翻译
我们都取决于流动性,车辆运输会影响我们大多数人的日常生活。因此,预测道路网络中流量状态的能力是一项重要的功能和具有挑战性的任务。流量数据通常是从部署在道路网络中的传感器获得的。关于时空图神经网络的最新建议通过将流量数据建模为扩散过程,在交通数据中建模复杂的时空相关性方面取得了巨大进展。但是,直观地,流量数据包含两种不同类型的隐藏时间序列信号,即扩散信号和固有信号。不幸的是,几乎所有以前的作品都将交通信号完全视为扩散的结果,同时忽略了固有的信号,这会对模型性能产生负面影响。为了提高建模性能,我们提出了一种新型的脱钩时空框架(DSTF),该框架以数据驱动的方式将扩散和固有的交通信息分开,其中包含独特的估计门和残差分解机制。分离的信号随后可以通过扩散和固有模块分别处理。此外,我们提出了DSTF的实例化,分离的动态时空图神经网络(D2STGNN),可捕获时空相关性,还具有动态图学习模块,该模块针对学习流量网络动态特征的学习。使用四个现实世界流量数据集进行的广泛实验表明,该框架能够推进最先进的框架。
translated by 谷歌翻译
Traffic forecasting as a canonical task of multivariate time series forecasting has been a significant research topic in AI community. To address the spatio-temporal heterogeneity and non-stationarity implied in the traffic stream, in this study, we propose Spatio-Temporal Meta-Graph Learning as a novel Graph Structure Learning mechanism on spatio-temporal data. Specifically, we implement this idea into Meta-Graph Convolutional Recurrent Network (MegaCRN) by plugging the Meta-Graph Learner powered by a Meta-Node Bank into GCRN encoder-decoder. We conduct a comprehensive evaluation on two benchmark datasets (METR-LA and PEMS-BAY) and a new large-scale traffic speed dataset in which traffic incident information is contained. Our model outperformed the state-of-the-arts to a large degree on all three datasets (over 27% MAE and 34% RMSE). Besides, through a series of qualitative evaluations, we demonstrate that our model can explicitly disentangle the road links and time slots with different patterns and be robustly adaptive to any anomalous traffic situations. Codes and datasets are available at https://github.com/deepkashiwa20/MegaCRN.
translated by 谷歌翻译
图表上的交通流量预测在许多字段(例如运输系统和计算机网络)中具有现实世界应用。由于复杂的时空相关性和非线性交通模式,交通预测可能是高度挑战的。现有的作品主要是通过分别考虑空间相关性和时间相关性来模拟此类时空依赖性的模型,并且无法对直接的时空相关性进行建模。受到图形域中变形金刚最近成功的启发,在本文中,我们建议使用局部多头自我攻击直接建模时空图上的跨空间相关性。为了降低时间的复杂性,我们将注意力接收场设置为空间相邻的节点,还引入了自适应图以捕获隐藏的空间范围依赖性。基于这些注意机制,我们提出了一种新型的自适应图形时空变压器网络(ASTTN),该网络堆叠了多个时空注意层以在输入图上应用自我注意力,然后是线性层进行预测。公共交通网络数据集,Metr-La PEMS-Bay,PEMSD4和PEMSD7的实验结果证明了我们模型的出色性能。
translated by 谷歌翻译
本文旨在统一非欧几里得空间中的空间依赖性和时间依赖性,同时捕获流量数据的内部空间依赖性。对于具有拓扑结构的时空属性实体,时空是连续的和统一的,而每个节点的当前状态都受到每个邻居的变异时期的邻居的过去状态的影响。大多数用于流量预测研究的空间依赖性和时间相关性的空间神经网络在处理中分别损害了时空完整性,而忽略了邻居节点的时间依赖期可以延迟和动态的事实。为了建模这种实际条件,我们提出了一种新型的空间 - 周期性图神经网络,将空间和时间视为不可分割的整体,以挖掘时空图,同时通过消息传播机制利用每个节点的发展时空依赖性。进行消融和参数研究的实验已经验证了拟议的遍及术的有效性,并且可以从https://github.com/nnzhan/traversenet中找到详细的实现。
translated by 谷歌翻译
Modeling multivariate time series has long been a subject that has attracted researchers from a diverse range of fields including economics, finance, and traffic. A basic assumption behind multivariate time series forecasting is that its variables depend on one another but, upon looking closely, it's fair to say that existing methods fail to fully exploit latent spatial dependencies between pairs of variables. In recent years, meanwhile, graph neural networks (GNNs) have shown high capability in handling relational dependencies. GNNs require well-defined graph structures for information propagation which means they cannot be applied directly for multivariate time series where the dependencies are not known in advance. In this paper, we propose a general graph neural network framework designed specifically for multivariate time series data. Our approach automatically extracts the uni-directed relations among variables through a graph learning module, into which external knowledge like variable attributes can be easily integrated. A novel mix-hop propagation layer and a dilated inception layer are further proposed to capture the spatial and temporal dependencies within the time series. The graph learning, graph convolution, and temporal convolution modules are jointly learned in an end-to-end framework. Experimental results show that our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets and achieves on-par performance with other approaches on two traffic datasets which provide extra structural information. CCS CONCEPTS• Computing methodologies → Neural networks; Artificial intelligence.
translated by 谷歌翻译
交通流量预测是智能运输系统的重要组成部分,从而受到了研究人员的关注。但是,交通道路之间的复杂空间和时间依赖性使交通流量的预测具有挑战性。现有方法通常是基于图形神经网络,使用交通网络的预定义空间邻接图来建模空间依赖性,而忽略了道路节点之间关系的动态相关性。此外,他们通常使用独立的时空组件来捕获时空依赖性,并且不会有效地对全局时空依赖性进行建模。本文提出了一个新的时空因果图形注意网络(STCGAT),以解决上述挑战。在STCGAT中,我们使用一种节点嵌入方法,可以在每个时间步骤中自适应生成空间邻接子图,而无需先验地理知识和对不同时间步骤动态生成图的拓扑的精细颗粒建模。同时,我们提出了一个有效的因果时间相关成分,其中包含节点自适应学习,图形卷积以及局部和全局因果关系卷积模块,以共同学习局部和全局时空依赖性。在四个真正的大型流量数据集上进行的广泛实验表明,我们的模型始终优于所有基线模型。
translated by 谷歌翻译
多变量时间序列(MTS)预测在智能应用的自动化和优化中起着重要作用。这是一个具有挑战性的任务,因为我们需要考虑复杂的变量依赖关系和可变间依赖关系。现有的作品仅在单个可变依赖项的帮助下学习时间模式。然而,许多真实世界MTS中有多种时间模式。单个可变间依赖项使模型更倾向于学习一种类型的突出和共享的时间模式。在本文中,我们提出了一个多尺度自适应图形神经网络(MOLDN)来解决上述问题。 MOLDN利用多尺度金字塔网络,以在不同的时间尺度上保留潜在的时间依赖关系。由于可变间依赖关系可以在不同的时间尺度下不同,所以自适应图学习模块被设计为在没有预先定义的前沿的情况下推断规模特定的可变依赖关系。鉴于多尺度特征表示和规模特定的可变间依赖关系,引入了一个多尺度的时间图神经网络,以共同模拟帧内依赖性和可变间依赖性。之后,我们开发一个尺度明智的融合模块,以在不同时间尺度上有效地促进协作,并自动捕获贡献的时间模式的重要性。四个真实数据集的实验表明,Magnn在各种设置上表明了最先进的方法。
translated by 谷歌翻译
多变量时间序列(MTS)预测在许多智能应用中引起了很多关注。它不是一个琐碎的任务,因为我们需要考虑一个可变的依赖关系和可变间依赖关系。但是,现有的作品是针对特定场景设计的,需要很多域知识和专家努力,这难以在不同的场景之间传输。在本文中,我们提出了一种尺度意识的神经结构,用于MTS预测(SNAS4MTF)的搜索框架。多尺度分解模块将原始时间序列转换为多尺度子系列,可以保留多尺度的时间模式。自适应图形学习模块在没有任何先前知识的情况下,在不同的时间尺度下递送不同的变量间依赖关系。对于MTS预测,搜索空间旨在在每次尺度上捕获可变的可变依赖性和可变间依赖关系。在端到端框架中共同学习多尺度分解,自适应图学习和神经架构搜索模块。两个现实世界数据集的大量实验表明,与最先进的方法相比,SNAS4MTF实现了有希望的性能。
translated by 谷歌翻译
Spatiotemporal forecasting has various applications in neuroscience, climate and transportation domain. Traffic forecasting is one canonical example of such learning task. The task is challenging due to (1) complex spatial dependency on road networks, (2) non-linear temporal dynamics with changing road conditions and (3) inherent difficulty of long-term forecasting. To address these challenges, we propose to model the traffic flow as a diffusion process on a directed graph and introduce Diffusion Convolutional Recurrent Neural Network (DCRNN), a deep learning framework for traffic forecasting that incorporates both spatial and temporal dependency in the traffic flow. Specifically, DCRNN captures the spatial dependency using bidirectional random walks on the graph, and the temporal dependency using the encoder-decoder architecture with scheduled sampling. We evaluate the framework on two real-world large scale road network traffic datasets and observe consistent improvement of 12% -15% over state-of-the-art baselines.
translated by 谷歌翻译
交通流量的技术预测在智能运输系统中起着重要作用。基于图形神经网络和注意机制,大多数先前的作品都利用变压器结构来发现时空依赖性和动态关系。但是,他们尚未彻底考虑时空序列之间的相关信息。在本文中,基于最大信息系数,我们提出了两种详尽的时空表示,空间相关信息(SCORR)和时间相关信息(TCORR)。使用SCORR,我们提出了一个基于相关信息的时空网络(CORRSTN),该网络包括一个动态图神经网络组件,可有效地将相关信息整合到空间结构中,以及一个多头注意力组件,以准确地对动态时间依赖性进行建模。利用TCORR,我们探索了不同周期数据之间的相关模式,以识别最相关的数据,然后设计有效的数据选择方案以进一步增强模型性能。公路交通流量(PEMS07和PEMS08)和地铁人群流(HZME流入和流出)数据集的实验结果表明,Corrstn在预测性能方面表现出了最先进的方法。特别是,在HZME(流出)数据集上,与ASTGNN模型相比,我们的模型在MAE,RMSE和MAPE的指标中分别提高了12.7%,14.4%和27.4%。
translated by 谷歌翻译
准确的实时流量预测对于智能运输系统(ITS)至关重要,它是各种智能移动应用程序的基石。尽管该研究领域以深度学习为主,但最近的研究表明,开发新模型结构的准确性提高正变得边缘。取而代之的是,我们设想可以通过在具有不同数据分布和网络拓扑的城市之间转移“与预测相关的知识”来实现改进。为此,本文旨在提出一个新型的可转移流量预测框架:域对抗空间 - 颞网(DASTNET)。 Dastnet已在多个源网络上进行了预训练,并通过目标网络的流量数据进行了微调。具体而言,我们利用图表表示学习和对抗域的适应技术来学习域不变的节点嵌入,这些嵌入式嵌入将进一步合并以建模时间流量数据。据我们所知,我们是第一个使用对抗性多域改编来解决网络范围的流量预测问题的人。 Dastnet始终优于三个基准数据集上的所有最新基线方法。训练有素的dastnet应用于香港的新交通探测器,并且在可用的探测器可用时(一天之内)可以立即(在一天之内)提供准确的交通预测。总体而言,这项研究提出了一种增强交通预测方法的替代方法,并为缺乏历史流量数据的城市提供了实际含义。
translated by 谷歌翻译