在本文中,我们介绍了蒙面的多步多变量预测(MMMF),这是一个新颖而普遍的自我监督学习框架,用于时间序列预测,并提供已知的未来信息。在许多真实世界的预测情况下,已知一些未来的信息,例如,在进行短期到中期的电力需求预测或进行飞机出发预测时的油价预测时,天气信息。现有的机器学习预测框架可以分为(1)基于样本的方法,在此方法中进行每个预测,以及(2)时间序列回归方法,其中未来信息未完全合并。为了克服现有方法的局限性,我们提出了MMMF,这是一个培训能够生成一系列输出的神经网络模型的框架,将过去的时间信息和有关未来的已知信息结合在一起,以做出更好的预测。实验在两个现实世界数据集上进行(1)中期电力需求预测,以及(2)前两个月的飞行偏离预测。他们表明,所提出的MMMF框架的表现不仅优于基于样本的方法,而且具有与完全相同的基本模型的现有时间序列预测模型。此外,一旦通过MMMF进行了神经网络模型,其推理速度与接受传统回归配方训练的相同模型的推理速度相似,从而使MMMF成为现有回归训练的时间序列的更好替代品,如果有一些可用的未来,信息。
translated by 谷歌翻译
变压器已成为自然语言处理(NLP)字段中的De-Facto标准。他们也在计算机视觉和其他域中获得了势头。变形金刚可以使人工智能(AI)模型能够动态地关注其输入的某些部分,因此更有效地关注某些部分。灵感来自变形金刚的成功,我们采用了这种技术来预测在多个视野中的战略飞行偏离需求。这项工作是为了支持斜切式的移动应用程序,PAIR,将预测的偏离需求显示为通用航空(GA)飞行运营商,因此他们可以更好地了解繁忙时期离开延误潜力的意识。涉及Pacer以前设计的基于规则的预测方法的现场示范表明,离职需求的预测准确性仍然具有改进的空间。本研究致力于提高来自两个关键方面的预测精度:更好的数据源和鲁棒预测算法。我们利用了两个数据来源,航空系统性能指标(ASPM)和系统广播信息管理(游泳)作为我们的输入。然后,我们用时间融合变压器(TFT)接受了预测的预测模型,用于五个不同的机场。案例研究表明,TFT通过大幅度的传统预测方法可以更好地表现优于传统的预测方法,它们可以在各种机场和更好的解释性方面导致更好的预测。
translated by 谷歌翻译
基于预测方法的深度学习已成为时间序列预测或预测的许多应用中的首选方法,通常通常优于其他方法。因此,在过去的几年中,这些方法现在在大规模的工业预测应用中无处不在,并且一直在预测竞赛(例如M4和M5)中排名最佳。这种实践上的成功进一步提高了学术兴趣,以理解和改善深厚的预测方法。在本文中,我们提供了该领域的介绍和概述:我们为深入预测的重要构建块提出了一定深度的深入预测;随后,我们使用这些构建块,调查了最近的深度预测文献的广度。
translated by 谷歌翻译
Wind power forecasting helps with the planning for the power systems by contributing to having a higher level of certainty in decision-making. Due to the randomness inherent to meteorological events (e.g., wind speeds), making highly accurate long-term predictions for wind power can be extremely difficult. One approach to remedy this challenge is to utilize weather information from multiple points across a geographical grid to obtain a holistic view of the wind patterns, along with temporal information from the previous power outputs of the wind farms. Our proposed CNN-RNN architecture combines convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to extract spatial and temporal information from multi-dimensional input data to make day-ahead predictions. In this regard, our method incorporates an ultra-wide learning view, combining data from multiple numerical weather prediction models, wind farms, and geographical locations. Additionally, we experiment with global forecasting approaches to understand the impact of training the same model over the datasets obtained from multiple different wind farms, and we employ a method where spatial information extracted from convolutional layers is passed to a tree ensemble (e.g., Light Gradient Boosting Machine (LGBM)) instead of fully connected layers. The results show that our proposed CNN-RNN architecture outperforms other models such as LGBM, Extra Tree regressor and linear regression when trained globally, but fails to replicate such performance when trained individually on each farm. We also observe that passing the spatial information from CNN to LGBM improves its performance, providing further evidence of CNN's spatial feature extraction capabilities.
translated by 谷歌翻译
A well-performing prediction model is vital for a recommendation system suggesting actions for energy-efficient consumer behavior. However, reliable and accurate predictions depend on informative features and a suitable model design to perform well and robustly across different households and appliances. Moreover, customers' unjustifiably high expectations of accurate predictions may discourage them from using the system in the long term. In this paper, we design a three-step forecasting framework to assess predictability, engineering features, and deep learning architectures to forecast 24 hourly load values. First, our predictability analysis provides a tool for expectation management to cushion customers' anticipations. Second, we design several new weather-, time- and appliance-related parameters for the modeling procedure and test their contribution to the model's prediction performance. Third, we examine six deep learning techniques and compare them to tree- and support vector regression benchmarks. We develop a robust and accurate model for the appliance-level load prediction based on four datasets from four different regions (US, UK, Austria, and Canada) with an equal set of appliances. The empirical results show that cyclical encoding of time features and weather indicators alongside a long-short term memory (LSTM) model offer the optimal performance.
translated by 谷歌翻译
在本文中,我们呈现SSDNet,这是一个新的时间序列预测的深层学习方法。SSDNet将变压器架构与状态空间模型相结合,提供概率和可解释的预测,包括趋势和季节性成分以及前一步对预测很重要。变压器架构用于学习时间模式并直接有效地估计状态空间模型的参数,而无需对卡尔曼滤波器的需要。我们全面评估了SSDNET在五个数据集上的性能,显示SSDNet是一种有效的方法,可在准确性和速度,优于最先进的深度学习和统计方法方面是一种有效的方法,能够提供有意义的趋势和季节性组件。
translated by 谷歌翻译
With the evolution of power systems as it is becoming more intelligent and interactive system while increasing in flexibility with a larger penetration of renewable energy sources, demand prediction on a short-term resolution will inevitably become more and more crucial in designing and managing the future grid, especially when it comes to an individual household level. Projecting the demand for electricity for a single energy user, as opposed to the aggregated power consumption of residential load on a wide scale, is difficult because of a considerable number of volatile and uncertain factors. This paper proposes a customized GRU (Gated Recurrent Unit) and Long Short-Term Memory (LSTM) architecture to address this challenging problem. LSTM and GRU are comparatively newer and among the most well-adopted deep learning approaches. The electricity consumption datasets were obtained from individual household smart meters. The comparison shows that the LSTM model performs better for home-level forecasting than alternative prediction techniques-GRU in this case. To compare the NN-based models with contrast to the conventional statistical technique-based model, ARIMA based model was also developed and benchmarked with LSTM and GRU model outcomes in this study to show the performance of the proposed model on the collected time series data.
translated by 谷歌翻译
21世纪的现代旅游面临着许多挑战。这些挑战之一是太空有限地区的游客数量迅速增长,例如历史城市中心,博物馆或地理瓶颈,例如狭窄的山谷。在这种情况下,对特定领域内的旅游量和旅游流程的正确准确预测对于游客管理任务,例如游客流量控制和预防人满为患至关重要。静态流量控制方法,例如限制对热点或使用常规低级控制器的访问,无法解决问题。在本文中,我们通过使用旅游区提供的可用粒状数据,并将结果与​​Arima进行比较,并将结果与​​Arima进行比较经典统计方法。我们的结果表明,与Arima方法相比,深度学习模型可以产生更好的预测,同时具有更快的推理时间和能够结合其他输入功能。
translated by 谷歌翻译
受到自然语言处理(NLP)中深度学习(DL)的成功的启发,我们应用了尖端DL技术,以预测战略时间地平线(4小时或更长时间)的飞行偏离需求。这项工作是为了支持斜切式的移动应用程序,PAIR,将预测的偏离需求显示为通用航空(GA)飞行运营商,因此他们可以更好地了解繁忙时期离开延误潜力的意识。涉及Pacer以前设计的基于规则的预测方法的现场示范表明,离职需求的预测准确性仍然具有改进的空间。本研究致力于提高来自两个关键方面的预测精度:更好的数据源和鲁棒预测算法。我们利用了两个数据来源,航空系统性能指标(ASPM)和系统广播信息管理(游泳)作为我们的输入。然后,我们用DL序列技术培训了预测模型,以序列(SEQ2Seq)和SEQ2Seq的注意力。案例研究表明,我们的SEQ2Seq在测试的四种预测算法中具有最佳。此外,与经典的自回归(AR)预测方法相比,通过更好的数据源,SEQ2Seq的注意力可以减少超过60%的平均平方误差(MSE)超过60%。
translated by 谷歌翻译
随着高级数字技术的蓬勃发展,用户以及能源分销商有可能获得有关家庭用电的详细信息。这些技术也可以用来预测家庭用电量(又称负载)。在本文中,我们研究了变分模式分解和深度学习技术的使用,以提高负载预测问题的准确性。尽管在文献中已经研究了这个问题,但选择适当的分解水平和提供更好预测性能的深度学习技术的关注较少。这项研究通过研究六个分解水平和五个不同的深度学习网络的影响来弥合这一差距。首先,使用变分模式分解将原始负载轮廓分解为固有模式函数,以减轻其非平稳方面。然后,白天,小时和过去的电力消耗数据作为三维输入序列馈送到四级小波分解网络模型。最后,将与不同固有模式函数相关的预测序列组合在一起以形成聚合预测序列。使用摩洛哥建筑物的电力消耗数据集(MORED)的五个摩洛哥家庭的负载曲线评估了该方法,并根据最新的时间序列模型和基线持久性模型进行了基准测试。
translated by 谷歌翻译
As ride-hailing services become increasingly popular, being able to accurately predict demand for such services can help operators efficiently allocate drivers to customers, and reduce idle time, improve congestion, and enhance the passenger experience. This paper proposes UberNet, a deep learning Convolutional Neural Network for short-term prediction of demand for ride-hailing services. UberNet empploys a multivariate framework that utilises a number of temporal and spatial features that have been found in the literature to explain demand for ride-hailing services. The proposed model includes two sub-networks that aim to encode the source series of various features and decode the predicting series, respectively. To assess the performance and effectiveness of UberNet, we use 9 months of Uber pickup data in 2014 and 28 spatial and temporal features from New York City. By comparing the performance of UberNet with several other approaches, we show that the prediction quality of the model is highly competitive. Further, Ubernet's prediction performance is better when using economic, social and built environment features. This suggests that Ubernet is more naturally suited to including complex motivators in making real-time passenger demand predictions for ride-hailing services.
translated by 谷歌翻译
多元时间序列预测已在各种领域(包括金融,交通,能源和医疗保健)中广泛范围的应用程序。为了捕获复杂的时间模式,大量研究设计了基于RNN,GNN和Transformers的许多变体的复杂神经网络体系结构。但是,复杂的模型在计算上通常是昂贵的,因此当应用于大型现实世界数据集时,在训练和推理效率方面面临严重的挑战。在本文中,我们介绍了Lightts,这是一种基于简单的基于MLP的结构的轻度深度学习体系结构。 LightT的关键思想是在两种微妙的下采样策略之上应用基于MLP的结构,包括间隔抽样和连续采样,灵感来自至关重要的事实,即下采样时间序列通常保留其大多数信息。我们对八个广泛使用的基准数据集进行了广泛的实验。与现有的最新方法相比,Lightts在其中五个方面表现出更好的性能,其余的性能可比性。此外,Lightts高效。与最大的基准数据集上的先前SOTA方法相比,它使用的触发器少于5%。此外,Lightts的预测准确性与以前的SOTA方法相比,在长序列预测任务中,预测准确性的差异要小得多。
translated by 谷歌翻译
制定准确的旅游预测模型对于为旅游管理做出理想的政策决策至关重要。早期研究旅游管理专注于发现与旅游需求相关的外部因素。最近的研究利用深度学习随需需求预测以及这些外部因素。它们主要使用递归神经网络模型,例如LSTM和RNN的框架。然而,这些模型不适合用于预测旅游需求。这是因为旅游需求受到各种外部因素变化的强烈影响,递归神经网络模型在处理这些多变量输入方面具有限制。我们提出了一种多主题CNN模型(MHAC),用于解决这些限制。 MHAC使用1D卷积神经网络来分析时间模式和注意机制,以反映输入变量之间的相关性。该模型可以从各种变量的时间序列数据中提取空间特征。我们通过考虑韩国文化的政治,疾病,季节和吸引力等外部因素,应用我们的预测框架来预测韩国的入境旅游变化。广泛实验的性能结果表明,我们的方法优于韩国旅游预测的其他基于深受学习的预测框架。
translated by 谷歌翻译
各种深度学习模型,尤其是一些最新的基于变压器的方法,已大大改善了长期时间序列预测的最新性能。但是,这些基于变压器的模型遭受了严重的恶化性能,并延长了输入长度除了使用扩展的历史信息。此外,这些方法倾向于在长期预测中处理复杂的示例,并增加模型复杂性,这通常会导致计算的显着增加和性能较低的鲁棒性(例如,过度拟合)。我们提出了一种新型的神经网络架构,称为Treedrnet,以进行更有效的长期预测。受稳健回归的启发,我们引入了双重残差链接结构,以使预测更加稳健。对Kolmogorov-Arnold表示定理进行了明确的介绍,并明确介绍了特征选择,模型集合和树结构,以进一步利用扩展输入序列,从而提高了可靠的输入序列和Treedrnet的代表力。与以前的顺序预测工作的深层模型不同,Treedrnet完全建立在多层感知下,因此具有很高的计算效率。我们广泛的实证研究表明,Treedrnet比最先进的方法更有效,将预测错误降低了20%至40%。特别是,Treedrnet的效率比基于变压器的方法高10倍。该代码将很快发布。
translated by 谷歌翻译
评估能源转型和能源市场自由化对资源充足性的影响是一种越来越重要和苛刻的任务。能量系统的上升复杂性需要足够的能量系统建模方法,从而提高计算要求。此外,随着复杂性,同样调用概率评估和场景分析同样增加不确定性。为了充分和高效地解决这些各种要求,需要来自数据科学领域的新方法来加速当前方法。通过我们的系统文献综述,我们希望缩小三个学科之间的差距(1)电力供应安全性评估,(2)人工智能和(3)实验设计。为此,我们对所选应用领域进行大规模的定量审查,并制作彼此不同学科的合成。在其他发现之外,我们使用基于AI的方法和应用程序的AI方法和应用来确定电力供应模型的复杂安全性的元素,并作为未充分涵盖的应用领域的储存调度和(非)可用性。我们结束了推出了一种新的方法管道,以便在评估电力供应安全评估时充分有效地解决当前和即将到来的挑战。
translated by 谷歌翻译
在线广告收入占发布者的收入流越来越多的份额,特别是对于依赖谷歌和Facebook等技术公司广告网络的中小型出版商而言。因此,出版商可能会从准确的在线广告收入预测中获益,以更好地管理其网站货币化战略。但是,只能获得自己的收入数据的出版商缺乏出版商广告总市场的整体视图,这反过来限制了他们在他们未来的在线广告收入中产生见解的能力。为了解决这一业务问题,我们利用了一个专有的数据库,包括来自各种各样的地区的大量出版商的Google Adsense收入。我们采用时间融合变压器(TFT)模型,这是一种新的基于关注的架构,以预测出版商的广告收入。我们利用多个协变量,不仅包括出版商自己的特征,还包括其他出版商的广告收入。我们的预测结果优于多个时间范围的几个基准深度学习时间系列预测模型。此外,我们通过分析可变重要性重量来识别显着的特征和自我注意重量来解释结果,以揭示持久的时间模式。
translated by 谷歌翻译
In this paper, we propose a new short-term load forecasting (STLF) model based on contextually enhanced hybrid and hierarchical architecture combining exponential smoothing (ES) and a recurrent neural network (RNN). The model is composed of two simultaneously trained tracks: the context track and the main track. The context track introduces additional information to the main track. It is extracted from representative series and dynamically modulated to adjust to the individual series forecasted by the main track. The RNN architecture consists of multiple recurrent layers stacked with hierarchical dilations and equipped with recently proposed attentive dilated recurrent cells. These cells enable the model to capture short-term, long-term and seasonal dependencies across time series as well as to weight dynamically the input information. The model produces both point forecasts and predictive intervals. The experimental part of the work performed on 35 forecasting problems shows that the proposed model outperforms in terms of accuracy its predecessor as well as standard statistical models and state-of-the-art machine learning models.
translated by 谷歌翻译
时间是时间序列最重要的特征之一,但没有得到足够的关注。先前的时间序列预测研究主要集中于将过去的子序列(查找窗口)映射到未来的系列(预测窗口),而系列的时间通常只是在大多数情况下都扮演辅助角色。由于这些窗口中的点处理,将其推断为长期未来在模式上是艰难的。为了克服这一障碍,我们提出了一个名为DateFormer的全新时间序列预测框架,他将注意力转移到建模时间上,而不是遵循上述实践。具体而言,首先按时间序列分为补丁,以监督通过Transformers(DERT)的日期编码器表示的动态日期代表的学习。然后将这些表示形式馈入一个简单的解码器,以产生更粗的(或全局)预测,并用于帮助模型从回顾窗口中寻求有价值的信息,以学习精致(或本地)的预测。 DateFormer通过将上述两个部分求和来获得最终结果。我们对七个基准测试的经验研究表明,与序列建模方法相比,时间模型方法对于长期序列预测更有效。 DateFormer产生最先进的准确性,相对改进40%,并将最大可靠的预测范围扩大到半年水平。
translated by 谷歌翻译
地下水位预测是一个应用时间序列预测任务,具有重要的社会影响,以优化水管理以及防止某些自然灾害:例如,洪水或严重的干旱。在文献中已经报告了机器学习方法以实现这项任务,但它们仅专注于单个位置的地下水水平的预测。一种全球预测方法旨在利用从各个位置的地下水级时序列序列,一次在一个地方或一次在几个地方产生预测。鉴于全球预测方法在著名的竞争中取得了成功,因此在地下水级别的预测上进行评估并查看它们与本地方法的比较是有意义的。在这项工作中,我们创建了一个1026地下水级时序列的数据集。每个时间序列都是由每日测量地下水水平和两个外源变量,降雨和蒸散量制成的。该数据集可向社区提供可重现性和进一步评估。为了确定最佳的配置,可以有效地预测完整的时间序列的地下水水平,我们比较了包括本地和全球时间序列预测方法在内的不同预测因子。我们评估了外源变量的影响。我们的结果分析表明,通过训练过去的地下水位和降雨数据的全球方法获得最佳预测。
translated by 谷歌翻译
准确的负载预测对于电力系统的电力市场运营以及电力系统中的其他实时决策任务至关重要。本文认为社区内的住宅客户的短期负荷预测(STLF)问题。现有的STLF工作主要侧重于预测馈线系统或单一客户的汇总负荷,但是在预测单个设备水平的负荷上,已经努力。在这项工作中,我们介绍了一种用于有效预测各个电器的功耗的STLF算法。所提出的方法在深度学习中强大的经常性神经网络(RNN)架构,称为长短短期记忆(LSTM)。当每个设备具有唯一重复的消耗模式时,将跟踪预测误差的模式,使得过去的预测误差可用于提高最终预测性能。实际负载数据集的数值测试证明了在现有的基于LSTM的方法和其他基准方法上提高了所提出的方法。
translated by 谷歌翻译