Rates of missing data often depend on record-keeping policies and thus may change across times and locations, even when the underlying features are comparatively stable. In this paper, we introduce the problem of Domain Adaptation under Missingness Shift (DAMS). Here, (labeled) source data and (unlabeled) target data would be exchangeable but for different missing data mechanisms. We show that when missing data indicators are available, DAMS can reduce to covariate shift. Focusing on the setting where missing data indicators are absent, we establish the following theoretical results for underreporting completely at random: (i) covariate shift is violated (adaptation is required); (ii) the optimal source predictor can perform worse on the target domain than a constant one; (iii) the optimal target predictor can be identified, even when the missingness rates themselves are not; and (iv) for linear models, a simple analytic adjustment yields consistent estimates of the optimal target parameters. In experiments on synthetic and semi-synthetic data, we demonstrate the promise of our methods when assumptions hold. Finally, we discuss a rich family of future extensions.
translated by 谷歌翻译
We address the problem of unsupervised domain adaptation when the source domain differs from the target domain because of a shift in the distribution of a latent subgroup. When this subgroup confounds all observed data, neither covariate shift nor label shift assumptions apply. We show that the optimal target predictor can be non-parametrically identified with the help of concept and proxy variables available only in the source domain, and unlabeled data from the target. The identification results are constructive, immediately suggesting an algorithm for estimating the optimal predictor in the target. For continuous observations, when this algorithm becomes impractical, we propose a latent variable model specific to the data generation process at hand. We show how the approach degrades as the size of the shift changes, and verify that it outperforms both covariate and label shift adjustment.
translated by 谷歌翻译
预测一组结果 - 而不是独特的结果 - 是统计学习中不确定性定量的有前途的解决方案。尽管有关于构建具有统计保证的预测集的丰富文献,但适应未知的协变量转变(实践中普遍存在的问题)还是一个严重的未解决的挑战。在本文中,我们表明具有有限样本覆盖范围保证的预测集是非信息性的,并提出了一种新型的无灵活分配方法PredSet-1Step,以有效地构建了在未知协方差转移下具有渐近覆盖范围保证的预测集。我们正式表明我们的方法是\ textIt {渐近上可能是近似正确},对大型样本的置信度有很好的覆盖误差。我们说明,在南非队列研究中,它在许多实验和有关HIV风险预测的数据集中实现了名义覆盖范围。我们的理论取决于基于一般渐近线性估计器的WALD置信区间覆盖范围的融合率的新结合。
translated by 谷歌翻译
Faced with distribution shift between training and test set, we wish to detect and quantify the shift, and to correct our classifiers without test set labels. Motivated by medical diagnosis, where diseases (targets), cause symptoms (observations), we focus on label shift, where the label marginal p(y) changes but the conditional p(x|y) does not. We propose Black Box Shift Estimation (BBSE) to estimate the test distribution p(y). BBSE exploits arbitrary black box predictors to reduce dimensionality prior to shift correction. While better predictors give tighter estimates, BBSE works even when predictors are biased, inaccurate, or uncalibrated, so long as their confusion matrices are invertible. We prove BBSE's consistency, bound its error, and introduce a statistical test that uses BBSE to detect shift. We also leverage BBSE to correct classifiers. Experiments demonstrate accurate estimates and improved prediction, even on high-dimensional datasets of natural images.
translated by 谷歌翻译
估算随机实验的因果效应是临床研究的核心。降低这些分析中的统计不确定性是统计学家的重要目标。注册管理机构,事先审判和健康记录构成了对患者的历史数据汇编,其在可能是可利用至此的患者下的历史数据。但是,大多数历史借贷方法通过牺牲严格的I型错误率控制来达到方差的减少。在这里,我们建议使用利用线性协变调整的历史数据来提高试验分析的效率而不会产生偏见。具体而言,我们在历史数据上培训预后模型,然后使用线性回归估计治疗效果,同时调整试验受试者预测结果(其预后分数)。我们证明,在某些条件下,这种预后调整程序在大类估算仪中获得了最低差异。当不符合这些条件时,预后的协变量调整仍然比原始协变量调整更有效,并且效率的增益与上述预后模型的预测准确性的衡量标准成正比,与原始协变量的线性关系的预测准确性。我们展示了使用模拟的方法和阿尔茨海默病的临床试验的再分析,并观察平均平均误差的有意义减少和估计方差。最后,我们提供了一种简化的渐近方差公式,使得能够计算这些收益的功率计算。在使用预后模型的预后模型中,可以实现10%和30%的样品尺寸减少。
translated by 谷歌翻译
部署的机器学习(ML)模型经常遇到与培训数据不同的新用户数据。因此,估计给定模型在新数据上的性能是朝着可靠的ML应用程序迈出的重要一步。但是,这是非常具有挑战性的,因为数据分布可以以灵活的方式变化,并且我们可能没有新数据上的任何标签,这在监视设置时通常是这种情况。在本文中,我们提出了一种新的分配移位模型,即稀疏关节移位(SJS),该模型考虑了标签和一些特征的关节移位。这统一并概括了几种现有的偏移模型,包括标签移位和稀疏协变量移位,仅考虑边际特征或标签分布位移。我们描述了SJS可识别的数学条件。我们进一步提出了See,这是一个算法框架,以表征SJS下的分布变化,并估计模型在没有任何标签的新数据上的性能。我们在具有各种ML模型的几个现实世界数据集上进行了广泛的实验。在不同的数据集和分配变化中,看到对现有方法的误差改善(最多达到数量级)的显着(最多)。
translated by 谷歌翻译
在制定政策指南时,随机对照试验(RCT)代表了黄金标准。但是,RCT通常是狭窄的,并且缺乏更广泛的感兴趣人群的数据。这些人群中的因果效应通常是使用观察数据集估算的,这可能会遭受未观察到的混杂和选择偏见。考虑到一组观察估计(例如,来自多项研究),我们提出了一个试图拒绝偏见的观察性估计值的元偏值。我们使用验证效应,可以从RCT和观察数据中推断出的因果效应。在拒绝未通过此测试的估计器之后,我们对RCT中未观察到的亚组的外推性效应产生了保守的置信区间。假设至少一个观察估计量在验证和外推效果方面是渐近正常且一致的,我们为我们算法输出的间隔的覆盖率概率提供了保证。为了促进在跨数据集的因果效应运输的设置中,我们给出的条件下,即使使用灵活的机器学习方法用于估计滋扰参数,群体平均治疗效应的双重稳定估计值也是渐近的正常。我们说明了方法在半合成和现实世界数据集上的特性,并表明它与标准的荟萃分析技术相比。
translated by 谷歌翻译
对比学习在各种自我监督的学习任务中取得了最先进的表现,甚至优于其监督的对应物。尽管其经验成功,但对为什么对比学习作品的理论认识仍然有限。在本文中,(i)我们证明,对比学习胜过AutoEncoder,一种经典无监督的学习方法,适用于特征恢复和下游任务;(ii)我们还说明标记数据在监督对比度学习中的作用。这为最近的发现提供了理论支持,即对标签对比学习的结果提高了域名下游任务中学识表的表现,但它可能会损害转移学习的性能。我们通过数值实验验证了我们的理论。
translated by 谷歌翻译
In many investigations, the primary outcome of interest is difficult or expensive to collect. Examples include long-term health effects of medical interventions, measurements requiring expensive testing or follow-up, and outcomes only measurable on small panels as in marketing. This reduces effective sample sizes for estimating the average treatment effect (ATE). However, there is often an abundance of observations on surrogate outcomes not of primary interest, such as short-term health effects or online-ad click-through. We study the role of such surrogate observations in the efficient estimation of treatment effects. To quantify their value, we derive the semiparametric efficiency bounds on ATE estimation with and without the presence of surrogates and several intermediary settings. The difference between these characterizes the efficiency gains from optimally leveraging surrogates. We study two regimes: when the number of surrogate observations is comparable to primary-outcome observations and when the former dominates the latter. We take an agnostic missing-data approach circumventing strong surrogate conditions previously assumed. To leverage surrogates' efficiency gains, we develop efficient ATE estimation and inference based on flexible machine-learning estimates of nuisance functions appearing in the influence functions we derive. We empirically demonstrate the gains by studying the long-term earnings effect of job training.
translated by 谷歌翻译
在本文中,我们的目标是提供对半监督(SS)因果推理的一般性和完全理解治疗效果。具体而言,我们考虑两个这样的估计值:(a)平均治疗效果和(b)定量处理效果,作为原型案例,在SS设置中,其特征在于两个可用的数据集:(i)标记的数据集大小$ N $,为响应和一组高维协变量以及二元治疗指标提供观察。 (ii)一个未标记的数据集,大小超过$ n $,但未观察到的响应。使用这两个数据集,我们开发了一个SS估计系列,该系列是:(1)更强大,并且(2)比其监督对应力更高的基于标记的数据集。除了通过监督方法可以实现的“标准”双重稳健结果(在一致性方面),我们还在正确指定模型中的倾向得分,我们进一步建立了我们SS估计的根本-N一致性和渐近常态。没有需要涉及的特定形式的滋扰职能。这种改善的鲁棒性来自使用大规模未标记的数据,因此通常不能在纯粹监督的环境中获得。此外,只要正确指定所有滋扰函数,我们的估计值都显示为半参数效率。此外,作为滋扰估计器的说明,我们考虑逆概率加权型核平滑估计,涉及未知的协变量转换机制,并在高维情景新颖的情况下建立其统一的收敛速率,这应该是独立的兴趣。两种模拟和实际数据的数值结果验证了我们对其监督对应物的优势,了解鲁棒性和效率。
translated by 谷歌翻译
在机器学习的许多应用中,不可避免的值是不可避免的,并且在培训和测试时都提出了挑战。当反复出现的模式中缺少变量时,已经提出了单独的图案子模型作为解决方案。但是,独立模型并不能有效利用所有可用数据。相反,将共享模型拟合到完整数据集通常取决于插补,而当丢失度取决于未观察到的因素时,这可能是次优的。我们提出了一种替代方法,称为共享模式子模型,该方法做出了a)在测试时对缺失值的强大预测,b)维持或提高模式子模型的预测能力,c)有一个简短的描述,可改善可解释性。我们确定共享是最佳的情况,即使缺失本身具有预测性以及预测目标取决于未观察到的变量。关于合成数据和两个医疗保健数据集的分类和回归实验表明,我们的模型在模式专业化和信息共享之间实现了良好的权衡。
translated by 谷歌翻译
在本文中,我们研究了在一组单位上进行的设计实验的问题,例如在线市场中的用户或用户组,以多个时间段,例如数周或数月。这些实验特别有助于研究对当前和未来结果具有因果影响的治疗(瞬时和滞后的影响)。设计问题涉及在实验之前或期间选择每个单元的治疗时间,以便最精确地估计瞬间和滞后的效果,实验后。这种治疗决策的优化可以通过降低其样本尺寸要求,直接最小化实验的机会成本。优化是我们提供近最优解的NP-Hard整数程序,当时在开始时进行设计决策(固定样本大小设计)。接下来,我们研究允许在实验期间进行适应性决策的顺序实验,并且还可能早期停止实验,进一步降低其成本。然而,这些实验的顺序性质使设计阶段和估计阶段复杂化。我们提出了一种新的算法,PGAE,通过自适应地制造治疗决策,估算治疗效果和绘制有效的实验后推理来解决这些挑战。 PGAE将来自贝叶斯统计,动态编程和样品分裂的思想结合起来。使用来自多个域的真实数据集的合成实验,我们证明了与基准相比,我们的固定样本尺寸和顺序实验的提出解决方案将实验的机会成本降低了50%和70%。
translated by 谷歌翻译
估计平均因果效应的理想回归(如果有)是什么?我们在离散协变量的设置中研究了这个问题,从而得出了各种分层估计器的有限样本方差的表达式。这种方法阐明了许多广泛引用的结果的基本统计现象。我们的博览会结合了研究因果效应估计的三种不同的方法论传统的见解:潜在结果,因果图和具有加性误差的结构模型。
translated by 谷歌翻译
最近,提出了不变的风险最小化(IRM)作为解决分布外(OOD)概括的有前途的解决方案。但是,目前尚不清楚何时应优先于广泛的经验风险最小化(ERM)框架。在这项工作中,我们从样本复杂性的角度分析了这两个框架,从而迈出了一个坚定的一步,以回答这个重要问题。我们发现,根据数据生成机制的类型,这两种方法可能具有有限样本和渐近行为。例如,在协变量偏移设置中,我们看到两种方法不仅达到了相同的渐近解决方案,而且具有相似的有限样本行为,没有明显的赢家。但是,对于其他分布变化,例如涉及混杂因素或反毒物变量的变化,两种方法到达不同的渐近解决方案,在这些方法中,保证IRM可以接近有限样品状态中所需的OOD溶液,而ERM甚至偶然地偏向于渐近。我们进一步研究了不同因素(环境的数量,模型的复杂性和IRM惩罚权重)如何影响IRM的样本复杂性与其距离OOD溶液的距离有关
translated by 谷歌翻译
即使是最精确的经济数据集也具有嘈杂,丢失,离散化或私有化的变量。实证研究的标准工作流程涉及数据清理,然后是数据分析,通常忽略数据清洁的偏差和方差后果。我们制定了具有损坏数据的因果推理的半造型模型,以包括数据清洁和数据分析。我们提出了一种新的数据清洁,估计和推理的新的端到端程序,以及数据清洁调整的置信区间。通过有限的示例参数,我们证明了因果关系参数的估算器的一致性,高斯近似和半游戏效率。 Gaussian近似的速率为N ^ { - 1/2} $,如平均治疗效果,如平均治疗效果,并且优雅地为当地参数劣化,例如特定人口统计的异构治疗效果。我们的关键假设是真正的协变量是较低的等级。在我们的分析中,我们为矩阵完成,统计学习和半统计统计提供了非对症的理论贡献。我们验证了数据清洁调整的置信区间隔的覆盖范围校准,以类似于2020年美国人口普查中实施的差异隐私。
translated by 谷歌翻译
我们提供了一种主动识别分布的小小的变化的方法,从而导致模型性能差异很大。为了确保这些转移是合理的,我们会以观察到的变量的因果机制的可解释变化来对其进行参数化。这定义了合理分布的参数鲁棒性集和相应的最坏情况损失。虽然可以通过重新加权技术(例如重要性抽样)来估算单个参数转移下的损失,但最终的最坏情况优化问题是非convex,并且估计值可能遭受较大的差异。但是,对于小移位,我们可以构建局部二阶近似值,以构建损失的损失,并提出找到最坏情况下的最差偏移作为特定的非凸二次二次优化问题,为此有效算法可用。我们证明,可以直接估计条件指数族模型中的移位,并且绑定了近似误差。我们将方法应用于计算机视觉任务(从图像中对性别进行分类),从而揭示了对非毒物属性转变的敏感性。
translated by 谷歌翻译
我们在具有固定设计的高维错误设置中分析主组件回归(PCR)。在适当的条件下,我们表明PCR始终以最小$ \ ell_2 $ -norm识别唯一模型,并且是最小的最佳模型。这些结果使我们能够建立非质子化的样本外预测,以确保提高最著名的速率。在我们的分析中,我们在样本外协变量之间引入了天然的线性代数条件,这使我们能够避免分布假设。我们的模拟说明了即使在协变量转移的情况下,这种条件对于概括的重要性。作为副产品,我们的结果还导致了合成控制文献的新结果,这是政策评估的主要方法。特别是,我们的minimax结果表明,在众多变体中,基于PCR的方法具有吸引力。据我们所知,我们对固定设计设置的预测保证在高维错误和合成控制文献中都是难以捉摸的。
translated by 谷歌翻译
监督学习的关键假设是培训和测试数据遵循相同的概率分布。然而,这种基本假设在实践中并不总是满足,例如,由于不断变化的环境,样本选择偏差,隐私问题或高标签成本。转移学习(TL)放松这种假设,并允许我们在分销班次下学习。通常依赖于重要性加权的经典TL方法 - 基于根据重要性(即测试过度训练密度比率)的训练损失培训预测器。然而,由于现实世界机器学习任务变得越来越复杂,高维和动态,探讨了新的新方法,以应对这些挑战最近。在本文中,在介绍基于重要性加权的TL基础之后,我们根据关节和动态重要预测估计审查最近的进步。此外,我们介绍一种因果机制转移方法,该方法包含T1中的因果结构。最后,我们讨论了TL研究的未来观点。
translated by 谷歌翻译
强大的机器学习模型的开发中的一个重要障碍是协变量的转变,当训练和测试集的输入分布时发生的分配换档形式在条件标签分布保持不变时发生。尽管现实世界应用的协变量转变普遍存在,但在现代机器学习背景下的理论理解仍然缺乏。在这项工作中,我们检查协变量的随机特征回归的精确高尺度渐近性,并在该设置中提出了限制测试误差,偏差和方差的精确表征。我们的结果激发了一种自然部分秩序,通过协变速转移,提供足够的条件来确定何时何时损害(甚至有助于)测试性能。我们发现,过度分辨率模型表现出增强的协会转变的鲁棒性,为这种有趣现象提供了第一个理论解释之一。此外,我们的分析揭示了分销和分发外概率性能之间的精确线性关系,为这一令人惊讶的近期实证观察提供了解释。
translated by 谷歌翻译
现代纵向研究在许多时间点收集特征数据,通常是相同的样本大小顺序。这些研究通常受到{辍学}和积极违规的影响。我们通过概括近期增量干预的效果(转换倾向分数而不是设置治疗价值)来解决这些问题,以适应多种结果和主题辍学。当条件忽略(不需要治疗阳性)时,我们给出了识别表达式的增量干预效果,并导出估计这些效果的非参数效率。然后我们提出了高效的非参数估计器,表明它们以快速参数速率收敛并产生均匀的推理保证,即使在较慢的速率下灵活估计滋扰函数。我们还研究了新型无限时间范围设置中的更传统的确定性效果的增量干预效应的方差比,其中时间点的数量可以随着样本大小而生长,并显示增量干预效果在统计精度下产生近乎指数的收益这个设置。最后,我们通过模拟得出结论,并在研究低剂量阿司匹林对妊娠结果的研究中进行了方法。
translated by 谷歌翻译