几乎没有射击转移通常显示出比零射击转移〜\ c​​ite {lauscher2020zero}的大幅增长,这实际上是对基于多语言的基于模型的系统的完全监督和无监督的学习方法之间的一个有用的权衡。本文探讨了选择注释数据的各种策略,这些策略可能会导致更好的几杆转移。所提出的方法依赖于多种措施,例如使用$ n $ gram语言模型,预测性熵和梯度嵌入。我们提出了一种用于序列标记任务的损失嵌入方法,该方法诱导了类似于梯度嵌入的多样性和不确定性采样。评估了建议的数据选择策略,并将最多20种语言的POS标签,NER和NLI任务进行比较。我们的实验表明,基于梯度和损失嵌入的策略始终优于随机数据选择基线,并且随着零拍传输的初始性能而变化。此外,即使模型使用原始特定任务特定标记的训练数据进行了零拍传输的较低比例,提出的方法也显示出改进的相似趋势。
translated by 谷歌翻译
与辅助语言的元学习已经表明了对交叉语言自然语言处理的有希望的改进。然而,以前的研究采样使用相同语言的元培训和元测试数据,这限制了模型交叉传输的能力。在本文中,我们提出了XLA-MAML,在元学习阶段执行直接交叉调整。我们对自然语言推理和问题进行零射击和几次拍摄实验。实验结果表明了我们在不同语言,任务和预磨料模型中的方法的有效性。我们还对元学习的各种交叉特定设置进行了分析,包括采样策略和并行性。
translated by 谷歌翻译
Multi-lingual language models (LM), such as mBERT, XLM-R, mT5, mBART, have been remarkably successful in enabling natural language tasks in low-resource languages through cross-lingual transfer from high-resource ones. In this work, we try to better understand how such models, specifically mT5, transfer *any* linguistic and semantic knowledge across languages, even though no explicit cross-lingual signals are provided during pre-training. Rather, only unannotated texts from each language are presented to the model separately and independently of one another, and the model appears to implicitly learn cross-lingual connections. This raises several questions that motivate our study, such as: Are the cross-lingual connections between every language pair equally strong? What properties of source and target language impact the strength of cross-lingual transfer? Can we quantify the impact of those properties on the cross-lingual transfer? In our investigation, we analyze a pre-trained mT5 to discover the attributes of cross-lingual connections learned by the model. Through a statistical interpretation framework over 90 language pairs across three tasks, we show that transfer performance can be modeled by a few linguistic and data-derived features. These observations enable us to interpret cross-lingual understanding of the mT5 model. Through these observations, one can favorably choose the best source language for a task, and can anticipate its training data demands. A key finding of this work is that similarity of syntax, morphology and phonology are good predictors of cross-lingual transfer, significantly more than just the lexical similarity of languages. For a given language, we are able to predict zero-shot performance, that increases on a logarithmic scale with the number of few-shot target language data points.
translated by 谷歌翻译
Much recent progress in applications of machine learning models to NLP has been driven by benchmarks that evaluate models across a wide variety of tasks. However, these broad-coverage benchmarks have been mostly limited to English, and despite an increasing interest in multilingual models, a benchmark that enables the comprehensive evaluation of such methods on a diverse range of languages and tasks is still missing. To this end, we introduce the Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark, a multi-task benchmark for evaluating the cross-lingual generalization capabilities of multilingual representations across 40 languages and 9 tasks. We demonstrate that while models tested on English reach human performance on many tasks, there is still a sizable gap in the performance of cross-lingually transferred models, particularly on syntactic and sentence retrieval tasks. There is also a wide spread of results across languages. We release the benchmark 1 to encourage research on cross-lingual learning methods that transfer linguistic knowledge across a diverse and representative set of languages and tasks.
translated by 谷歌翻译
最近的工作表明,通过多语种伯爵(MBENT)获得的知识有两个组件:特定于语言和语言中立的。本文分析了它们之间的关系,在两项任务的微调 - POS标记和自然语言推理的背景下 - 需要模型带来不同的语言特异性知识。可视化揭示MBERT失去了在微调后通过语言进行群集表示的能力,这是通过语言识别实验的证据支持的结果。然而,显示使用梯度逆转和迭代对抗性学习的“无学习”语言特定表示的进一步实验,不会在微调的效果之外增加对独立于语言无关的组件的进一步改进。此处提出的结果表明,微调的过程导致模型的重组有限的代表能力,以特定于语言特定的代表性的语言无关的表示。
translated by 谷歌翻译
GPT-3等大型自回归语言模型是几秒钟的学习者,可以在没有微调的情况下执行各种语言任务。虽然已知这些模型能够共同代表许多不同的语言,但他们的培训数据由英语主导,可能限制了它们的交叉概括。在这项工作中,我们在覆盖多种语言的平衡语料库上培训多语言自回归语言模型,并在广泛的任务中研究他们几乎没有零点的学习能力。我们最大的模型,具有75亿参数,在20多种代表语言中,在几种代表语言中,在几种代表性语言中,在几种代表性语言中,在多语言型号推理中表现出可比大小的GPT-3(在0次设置和0次拍摄设置中的绝对精度改善+ 7.4% 4-拍摄设置中的9.4%)和自然语言推理(每次拍摄和4次设置中的每一个+ 5.4%)。在Flores-101机器翻译基准测试中,我们的模型优于GPT-3在182个翻译方向上有32个培训例子,同时超过45个方向的官方监督基线。我们介绍了模型成功和失败的位置的详细分析,特别是它尤其显示在某些任务中实现交叉语境的内容学习,而仍然存在改善表面的鲁棒性和适应没有a的任务的余地自然冻结形式。最后,我们评估我们在仇恨语音检测中以五种语言的仇恨语音检测的模型,并发现它具有与可比大小的GPT-3模型类似的限制。
translated by 谷歌翻译
多语言语言模型(\ mllms),如mbert,xlm,xlm-r,\ textit {etc。}已成为一种可行的选择,使预先估计到大量语言的力量。鉴于他们的成功在零射击转移学习中,在(i)建立更大的\ mllms〜覆盖了大量语言(ii)创建覆盖更广泛的任务和语言来评估的详尽工作基准mllms〜(iii)分析单音零点,零拍摄交叉和双语任务(iv)对Monolingual的性能,了解\ mllms〜(v)增强(通常)学习的通用语言模式(如果有的话)有限的容量\ mllms〜以提高他们在已见甚至看不见语言的表现。在这项调查中,我们审查了现有的文学,涵盖了上述与\ MLLMS有关的广泛研究领域。根据我们的调查,我们建议您有一些未来的研究方向。
translated by 谷歌翻译
有监督的基于深度学习的方法已应用于以任务为导向的对话框,并在有足够数量的培训示例可用时对有限的域和语言应用有效。在实践中,这些方法遭受了域驱动设计和资源不足的语言的缺点。域和语言模型应该随着问题空间的发展而增长和变化。一方面,对转移学习的研究证明了基于多语言变压器模型学习语义丰富的表示的跨语性能力。另一方面,除了上述方法之外,元学习还能够开发任务和语言学习算法,能够实现泛滥。在这种情况下,本文提出了使用典型的神经网络和基于多语言变压器的模型来研究使用协同进行几次学习的跨语性可传递性。自然语言的实验理解多亚提斯++语料库的任务表明,我们的方法基本上改善了低资源和高资源语言之间观察到的转移学习表现。更普遍地说,我们的方法证实,可以将具有特定语言的有意义的潜在空间推广到使用元学习的情况下看不见和资源不足的潜在空间。
translated by 谷歌翻译
虽然最近关于多语种语言模型的工作已经证明了他们对下游任务的交叉零射击传输的能力,但社区缺乏符合语言之间的共享属性,可以实现这种转移。涉及成对的自然语言的分析通常是不确定的,并且矛盾以来,许多语言方面同时不同。在本文中,我们进行大规模的实证研究,通过测量四种不同的自然语言和通过修改脚本,单词顺序和语法等方面构造的零拍摄传递来隔离各种语言特性的影响。在其他事情之外,我们的实验表明,当语言的单词顺序不同时,缺乏子字重叠显着影响零拍摄传输,并且在语言之间的传输性能和Word嵌入对准之间存在强烈相关性(例如,r = 0.94关于NLI的任务)。我们的结果呼吁专注于在明确改进语言之间的嵌入对齐而不是依赖于隐含的出现。
translated by 谷歌翻译
Misinformation spread over social media has become an undeniable infodemic. However, not all spreading claims are made equal. If propagated, some claims can be destructive, not only on the individual level, but to organizations and even countries. Detecting claims that should be prioritized for fact-checking is considered the first step to fight against spread of fake news. With training data limited to a handful of languages, developing supervised models to tackle the problem over lower-resource languages is currently infeasible. Therefore, our work aims to investigate whether we can use existing datasets to train models for predicting worthiness of verification of claims in tweets in other languages. We present a systematic comparative study of six approaches for cross-lingual check-worthiness estimation across pairs of five diverse languages with the help of Multilingual BERT (mBERT) model. We run our experiments using a state-of-the-art multilingual Twitter dataset. Our results show that for some language pairs, zero-shot cross-lingual transfer is possible and can perform as good as monolingual models that are trained on the target language. We also show that in some languages, this approach outperforms (or at least is comparable to) state-of-the-art models.
translated by 谷歌翻译
Multilingual Pretrained Language Models (MPLMs) have shown their strong multilinguality in recent empirical cross-lingual transfer studies. In this paper, we propose the Prompts Augmented by Retrieval Crosslingually (PARC) pipeline to improve the zero-shot performance on low-resource languages (LRLs) by augmenting the context with semantically similar sentences retrieved from a high-resource language (HRL) as prompts. PARC improves the zero-shot performance on three downstream tasks (binary sentiment classification, topic categorization and natural language inference) with multilingual parallel test sets across 10 LRLs covering 6 language families in both unlabeled settings (+5.1%) and labeled settings (+16.3%). PARC-labeled also outperforms the finetuning baseline by 3.7%. We find a significant positive correlation between cross-lingual transfer performance on one side, and the similarity between the high- and low-resource languages as well as the amount of low-resource pretraining data on the other side. A robustness analysis suggests that PARC has the potential to achieve even stronger performance with more powerful MPLMs.
translated by 谷歌翻译
姿态检测的目标是确定以目标朝向目标的文本中表达的视点。这些观点或上下文通常以许多不同的语言表达,这取决于用户和平台,这可以是本地新闻插座,社交媒体平台,新闻论坛等。然而,姿态检测的大多数研究已经限于使用单一语言和几个有限的目标,在交叉舌姿态检测很少有效。此外,标记数据的非英语来源通常稀缺,并具有额外的挑战。最近,大型多语言语言模型在许多非英语任务上大大提高了性能,尤其是具有有限数量的示例。这突出了模型预培训的重要性及其从少数例子中学习的能力。在本文中,我们展示了对日期交叉姿态检测的最全面的研究:我们在6名语言系列中使用12种语言的12种不同的数据集进行实验,每个都有6个低资源评估设置。对于我们的实验,我们构建了模式开发培训,提出了添加一种新颖的标签编码器来简化言语程序。我们进一步提出了基于情绪的姿态数据进行预培训,这在与几个强的基线相比,在低拍摄环境中显示了大量的6%F1绝对的增长。
translated by 谷歌翻译
可靠的评估基准是为了可复制性和全面性而设计的,在机器学习方面取得了进步。但是,由于缺乏多语言基准,视觉和语言研究主要集中在英语任务上。为了填补这一空白,我们介绍了图像的语言理解评估基准。 Iglue通过汇总已有的数据集并创建新的数据来汇集 - 视觉问题回答,跨模式检索,扎根的推理以及跨20种不同语言的扎根成本。我们的基准测试能够评估多语言多模型用于转移学习的模型,不仅在零弹位设置中,而且还以新定义的少数图学习设置。根据对可用最新模型的评估,我们发现翻译测试转移优于零弹性转移,并且对于许多任务而言,很难利用射击的学习。此外,下游性能部分用可用的未标记文本数据进行预处理来解释,并且仅通过目标源语言的类型学距离而微弱。我们希望通过向社区释放基准来鼓励该领域的未来研究工作。
translated by 谷歌翻译
多语种预训练模型在许多多语言NLP任务中展示了它们的有效性,并使从高资源语言到低资源的零射击或几秒钟传输。然而,由于某种语言之间的显着的类型差异和矛盾,这些模型通常在许多语言和交叉语言设置上表现不佳,这表明了学习单一模型同时处理大规模不同语言的难度。为了减轻这个问题,我们提出了一个新的多语言预训练管道。我们建议从多语言预先训练的模型产生语言表示,并进行语言分析,以表明语言表示相似度反映了从多个角度来看的语言相似度,包括语言家庭,地理蓝星,词汇表演和语法。然后,我们将所有目标语言集成到多个组中,并将每个组名称为表示SprachBund。因此,在同一表示SprachBund中的语言应该在培训和微调中互相提升,因为它们共享丰富的语言相似性。我们预先列车为每个代表斯普拉克班达一个多语言模型。实验在交叉基准上进行,与强基线相比,实现了显着的改进。
translated by 谷歌翻译
Pre-trained multilingual language models show significant performance gains for zero-shot cross-lingual model transfer on a wide range of natural language understanding (NLU) tasks. Previously, for zero-shot cross-lingual evaluation, pre-trained models are only fine-tuned on English data and tested on a variety of target languages. In this paper, we do cross-lingual evaluation on various NLU tasks (sentence classification, sequence labeling, question answering) using prompt-tuning and compare it with fine-tuning. The results show that prompt tuning achieves much better cross-lingual transfer than fine-tuning across datasets, with only 0.1% to 0.3% tuned parameters. Additionally, we demonstrate through the analysis that prompt tuning can have better cross-lingual transferability of representations on downstream tasks with better aligned decision boundaries.
translated by 谷歌翻译
Multilingual BERT (mBERT) has demonstrated considerable cross-lingual syntactic ability, whereby it enables effective zero-shot cross-lingual transfer of syntactic knowledge. The transfer is more successful between some languages, but it is not well understood what leads to this variation and whether it fairly reflects difference between languages. In this work, we investigate the distributions of grammatical relations induced from mBERT in the context of 24 typologically different languages. We demonstrate that the distance between the distributions of different languages is highly consistent with the syntactic difference in terms of linguistic formalisms. Such difference learnt via self-supervision plays a crucial role in the zero-shot transfer performance and can be predicted by variation in morphosyntactic properties between languages. These results suggest that mBERT properly encodes languages in a way consistent with linguistic diversity and provide insights into the mechanism of cross-lingual transfer.
translated by 谷歌翻译
Translating training data into many languages has emerged as a practical solution for improving cross-lingual transfer. For tasks that involve span-level annotations, such as information extraction or question answering, an additional label projection step is required to map annotated spans onto the translated texts. Recently, a few efforts have utilized a simple mark-then-translate method to jointly perform translation and projection by inserting special markers around the labeled spans in the original sentence. However, as far as we are aware, no empirical analysis has been conducted on how this approach compares to traditional annotation projection based on word alignment. In this paper, we present an extensive empirical study across 42 languages and three tasks (QA, NER, and Event Extraction) to evaluate the effectiveness and limitations of both methods, filling an important gap in the literature. Experimental results show that our optimized version of mark-then-translate, which we call EasyProject, is easily applied to many languages and works surprisingly well, outperforming the more complex word alignment-based methods. We analyze several key factors that affect end-task performance, and show EasyProject works well because it can accurately preserve label span boundaries after translation. We will publicly release all our code and data.
translated by 谷歌翻译
Universal cross-lingual sentence embeddings map semantically similar cross-lingual sentences into a shared embedding space. Aligning cross-lingual sentence embeddings usually requires supervised cross-lingual parallel sentences. In this work, we propose mSimCSE, which extends SimCSE to multilingual settings and reveal that contrastive learning on English data can surprisingly learn high-quality universal cross-lingual sentence embeddings without any parallel data. In unsupervised and weakly supervised settings, mSimCSE significantly improves previous sentence embedding methods on cross-lingual retrieval and multilingual STS tasks. The performance of unsupervised mSimCSE is comparable to fully supervised methods in retrieving low-resource languages and multilingual STS. The performance can be further enhanced when cross-lingual NLI data is available. Our code is publicly available at https://github.com/yaushian/mSimCSE.
translated by 谷歌翻译
翻译质量估计(QE)是预测机器翻译(MT)输出质量的任务,而无需任何参考。作为MT实际应用中的重要组成部分,这项任务已越来越受到关注。在本文中,我们首先提出了XLMRScore,这是一种基于使用XLM-Roberta(XLMR)模型计算的BertScore的简单无监督的QE方法,同时讨论了使用此方法发生的问题。接下来,我们建议两种减轻问题的方法:用未知令牌和预训练模型的跨语性对准替换未翻译的单词,以表示彼此之间的一致性单词。我们在WMT21 QE共享任务的四个低资源语言对上评估了所提出的方法,以及本文介绍的新的英语FARSI测试数据集。实验表明,我们的方法可以在两个零射击方案的监督基线中获得可比的结果,即皮尔森相关性的差异少于0.01,同时在所有低资源语言对中的平均低资源语言对中的无人看管竞争对手的平均水平超过8%的平均水平超过8%。 。
translated by 谷歌翻译
We present, Naamapadam, the largest publicly available Named Entity Recognition (NER) dataset for the 11 major Indian languages from two language families. In each language, it contains more than 400k sentences annotated with a total of at least 100k entities from three standard entity categories (Person, Location and Organization) for 9 out of the 11 languages. The training dataset has been automatically created from the Samanantar parallel corpus by projecting automatically tagged entities from an English sentence to the corresponding Indian language sentence. We also create manually annotated testsets for 8 languages containing approximately 1000 sentences per language. We demonstrate the utility of the obtained dataset on existing testsets and the Naamapadam-test data for 8 Indic languages. We also release IndicNER, a multilingual mBERT model fine-tuned on the Naamapadam training set. IndicNER achieves the best F1 on the Naamapadam-test set compared to an mBERT model fine-tuned on existing datasets. IndicNER achieves an F1 score of more than 80 for 7 out of 11 Indic languages. The dataset and models are available under open-source licenses at https://ai4bharat.iitm.ac.in/naamapadam.
translated by 谷歌翻译