Universal cross-lingual sentence embeddings map semantically similar cross-lingual sentences into a shared embedding space. Aligning cross-lingual sentence embeddings usually requires supervised cross-lingual parallel sentences. In this work, we propose mSimCSE, which extends SimCSE to multilingual settings and reveal that contrastive learning on English data can surprisingly learn high-quality universal cross-lingual sentence embeddings without any parallel data. In unsupervised and weakly supervised settings, mSimCSE significantly improves previous sentence embedding methods on cross-lingual retrieval and multilingual STS tasks. The performance of unsupervised mSimCSE is comparable to fully supervised methods in retrieving low-resource languages and multilingual STS. The performance can be further enhanced when cross-lingual NLI data is available. Our code is publicly available at https://github.com/yaushian/mSimCSE.
translated by 谷歌翻译
虽然对比学习大大提升了句子嵌入的表示,但它仍然受到现有句子数据集的大小的限制。在本文中,我们向Transaug(转换为增强),它提供了利用翻译句子对作为文本的数据增强的第一次探索,并介绍了两级范例,以提高最先进的句子嵌入。我们不是采用以其他语言设置培训的编码器,我们首先从SIMCSE编码器(以英语预先预先预订)蒸发蒸馏出一个汉语编码器,以便它们的嵌入在语义空间中靠近,这可以被后悔作为隐式数据增强。然后,我们只通过交叉语言对比学习更新英语编码器并将蒸馏的中文编码器冷冻。我们的方法在标准语义文本相似度(STS)上实现了一种新的最先进的,表现出SIMCSE和句子T5,以及由Senteval评估的传输任务的相应轨道中的最佳性能。
translated by 谷歌翻译
在本文中,我们建议将不同语言的句子表示对齐到统一的嵌入空间,其中可以用简单的点产品计算语义相似之处(交叉语言和单晶)。预先接受的语言模型与翻译排名任务进行微调。现有工作(Feng等人,2020)使用与批量相同的句子作为否定,这可能会遭受易于否定的问题。我们适应MOCO(赫尔,2020)以进一步提高对准质量。作为实验结果表明,我们的模型产生的句子表示在包括Tatoeba en-Zh的许多任务中实现了新的最先进的,包括STATOEBA EN-ZH类似性搜索(Artetxe和Schwenk,2019b),Bucc en-Zh Bitext Mining,7个数据集上的语义文本相似性。
translated by 谷歌翻译
先前的研究证明,跨语性知识蒸馏可以显着提高预训练模型的跨语义相似性匹配任务的性能。但是,在此操作中,学生模型必须大。否则,其性能将急剧下降,从而使部署到内存限制设备的不切实际。为了解决这个问题,我们深入研究了跨语言知识蒸馏,并提出了一个多阶段蒸馏框架,用于构建一个小型但高性能的跨语性模型。在我们的框架中,合并了对比度学习,瓶颈和参数复发策略,以防止在压缩过程中损害性能。实验结果表明,我们的方法可以压缩XLM-R和Minilm的大小超过50 \%,而性能仅降低约1%。
translated by 谷歌翻译
State-of-the-art natural language processing systems rely on supervision in the form of annotated data to learn competent models. These models are generally trained on data in a single language (usually English), and cannot be directly used beyond that language. Since collecting data in every language is not realistic, there has been a growing interest in crosslingual language understanding (XLU) and low-resource cross-language transfer. In this work, we construct an evaluation set for XLU by extending the development and test sets of the Multi-Genre Natural Language Inference Corpus (MultiNLI) to 15 languages, including low-resource languages such as Swahili and Urdu. We hope that our dataset, dubbed XNLI, will catalyze research in cross-lingual sentence understanding by providing an informative standard evaluation task. In addition, we provide several baselines for multilingual sentence understanding, including two based on machine translation systems, and two that use parallel data to train aligned multilingual bag-of-words and LSTM encoders. We find that XNLI represents a practical and challenging evaluation suite, and that directly translating the test data yields the best performance among available baselines.
translated by 谷歌翻译
多语言语言模型(\ mllms),如mbert,xlm,xlm-r,\ textit {etc。}已成为一种可行的选择,使预先估计到大量语言的力量。鉴于他们的成功在零射击转移学习中,在(i)建立更大的\ mllms〜覆盖了大量语言(ii)创建覆盖更广泛的任务和语言来评估的详尽工作基准mllms〜(iii)分析单音零点,零拍摄交叉和双语任务(iv)对Monolingual的性能,了解\ mllms〜(v)增强(通常)学习的通用语言模式(如果有的话)有限的容量\ mllms〜以提高他们在已见甚至看不见语言的表现。在这项调查中,我们审查了现有的文学,涵盖了上述与\ MLLMS有关的广泛研究领域。根据我们的调查,我们建议您有一些未来的研究方向。
translated by 谷歌翻译
翻译质量估计(QE)是预测机器翻译(MT)输出质量的任务,而无需任何参考。作为MT实际应用中的重要组成部分,这项任务已越来越受到关注。在本文中,我们首先提出了XLMRScore,这是一种基于使用XLM-Roberta(XLMR)模型计算的BertScore的简单无监督的QE方法,同时讨论了使用此方法发生的问题。接下来,我们建议两种减轻问题的方法:用未知令牌和预训练模型的跨语性对准替换未翻译的单词,以表示彼此之间的一致性单词。我们在WMT21 QE共享任务的四个低资源语言对上评估了所提出的方法,以及本文介绍的新的英语FARSI测试数据集。实验表明,我们的方法可以在两个零射击方案的监督基线中获得可比的结果,即皮尔森相关性的差异少于0.01,同时在所有低资源语言对中的平均低资源语言对中的无人看管竞争对手的平均水平超过8%的平均水平超过8%。 。
translated by 谷歌翻译
以前的工作主要侧重于改善NLU任务的交叉传输,具有多语言预用编码器(MPE),或提高与伯特的监督机器翻译的性能。然而,探索了,MPE是否可以有助于促进NMT模型的交叉传递性。在本文中,我们专注于NMT中的零射频转移任务。在此任务中,NMT模型培训,只有一个语言对的并行数据集和搁置架MPE,然后它直接测试在零拍语言对上。我们为此任务提出了Sixt,一个简单而有效的模型。 SIXT利用了两阶段培训计划利用MPE,并进一步改进了解离编码器和容量增强的解码器。使用此方法,SIMPT显着优于MBart,这是一个用于NMT的预磨削的多语言编码器解码器模型,平均改善了14个源语言的零拍摄的任何英语测试集上的7.1 BLEU。此外,培训计算成本和培训数据较少,我们的模型在15个任何英语测试组上实现了比Criss和M2M-100,两个强大的多语言NMT基线更好的性能。
translated by 谷歌翻译
对于多语言序列到序列预审预周序模型(多语言SEQ2SEQ PLM),例如姆巴特(Mbart),自制的预处理任务接受了多种单语言的培训,例如25种来自CommonCrawl的语言,而下游的跨语言任务通常在双语语言子集上进行,例如英语 - 德国人,存在数据差异,即领域的差异,以及跨语言学习客观差异,即在训练和填充阶段之间的任务差异。为了弥合上述跨语言域和任务差距,我们将使用额外的代码切换恢复任务扩展了香草预后管道。具体而言,第一阶段采用自我监督的代码转换还原任务作为借口任务,从而允许多语言SEQ2SEQ PLM获取一些域内对齐信息。在第二阶段,我们正常在下游数据上微调模型。 NLG评估(12个双语翻译任务,30个零射击任务和2项跨语言摘要任务)和NLU评估(7个跨语性自然语言推理任务)的实验表明,我们的模型超过了强大的基线MBART,具有标准的FINETUNNING,这表明了我们的模型策略,一致。分析表明,我们的方法可以缩小跨语性句子表示的欧几里得距离,并通过微不足道的计算成本改善模型概括。我们在:https://github.com/zanchangtong/csr4mbart上发布代码。
translated by 谷歌翻译
在这项工作中,我们提出了一个系统的实证研究,专注于最先进的多语言编码器在跨越多种不同语言对的交叉语言文档和句子检索任务的适用性。我们首先将这些模型视为多语言文本编码器,并在无监督的ad-hoc句子和文档级CLIR中基准性能。与监督语言理解相比,我们的结果表明,对于无监督的文档级CLIR - 一个没有针对IR特定的微调 - 预训练的多语言编码器的相关性判断,平均未能基于CLWE显着优于早期模型。对于句子级检索,我们确实获得了最先进的性能:然而,通过多语言编码器来满足高峰分数,这些编码器已经进一步专注于监督的时尚,以便句子理解任务,而不是使用他们的香草'现货'变体。在这些结果之后,我们介绍了文档级CLIR的本地化相关性匹配,在那里我们独立地对文件部分进行了查询。在第二部分中,我们评估了在一系列零拍语言和域转移CLIR实验中的英语相关数据中进行微调的微调编码器精细调整的微调我们的结果表明,监督重新排名很少提高多语言变压器作为无监督的基数。最后,只有在域名对比度微调(即,同一域名,只有语言转移),我们设法提高排名质量。我们在目标语言中单次检索的交叉定向检索结果和结果(零拍摄)交叉传输之间的显着实证差异,这指出了在单机数据上训练的检索模型的“单声道过度装备”。
translated by 谷歌翻译
Much recent progress in applications of machine learning models to NLP has been driven by benchmarks that evaluate models across a wide variety of tasks. However, these broad-coverage benchmarks have been mostly limited to English, and despite an increasing interest in multilingual models, a benchmark that enables the comprehensive evaluation of such methods on a diverse range of languages and tasks is still missing. To this end, we introduce the Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark, a multi-task benchmark for evaluating the cross-lingual generalization capabilities of multilingual representations across 40 languages and 9 tasks. We demonstrate that while models tested on English reach human performance on many tasks, there is still a sizable gap in the performance of cross-lingually transferred models, particularly on syntactic and sentence retrieval tasks. There is also a wide spread of results across languages. We release the benchmark 1 to encourage research on cross-lingual learning methods that transfer linguistic knowledge across a diverse and representative set of languages and tasks.
translated by 谷歌翻译
在过去几年中,已经提出了多语言预训练的语言模型(PLMS)的激增,以实现许多交叉曲线下游任务的最先进的性能。但是,了解为什么多语言PLMS表现良好仍然是一个开放域。例如,目前尚不清楚多语言PLM是否揭示了不同语言的一致令牌归因。要解决此问题,请在本文中提出了令牌归因(CCTA)评估框架的交叉致新一致性。三个下游任务中的广泛实验表明,多语言PLMS为多语素同义词分配了显着不同的归因。此外,我们有以下观察结果:1)当它用于培训PLMS时,西班牙语在不同语言中实现了最常见的令牌归属;2)令牌归属的一致性与下游任务中的性能强烈相关。
translated by 谷歌翻译
多语种伯格(M-BERT)中的令牌嵌入式包含语言和语义信息。我们发现,通过简单地平均语言的令牌的嵌入来获得语言的表示。鉴于这种语言表示,我们通过操纵令牌嵌入式来控制多语种倾斜的输出语言,从而实现无监督的令牌翻译。我们进一步提出了一种计算廉价但有效的方法来改善基于该观察的M-BERT的交叉能力。
translated by 谷歌翻译
Pre-trained multilingual language models show significant performance gains for zero-shot cross-lingual model transfer on a wide range of natural language understanding (NLU) tasks. Previously, for zero-shot cross-lingual evaluation, pre-trained models are only fine-tuned on English data and tested on a variety of target languages. In this paper, we do cross-lingual evaluation on various NLU tasks (sentence classification, sequence labeling, question answering) using prompt-tuning and compare it with fine-tuning. The results show that prompt tuning achieves much better cross-lingual transfer than fine-tuning across datasets, with only 0.1% to 0.3% tuned parameters. Additionally, we demonstrate through the analysis that prompt tuning can have better cross-lingual transferability of representations on downstream tasks with better aligned decision boundaries.
translated by 谷歌翻译
Contrastive learning has been successfully used for retrieval of semantically aligned sentences, but it often requires large batch sizes or careful engineering to work well. In this paper, we instead propose a generative model for learning multilingual text embeddings which can be used to retrieve or score sentence pairs. Our model operates on parallel data in $N$ languages and, through an approximation we introduce, efficiently encourages source separation in this multilingual setting, separating semantic information that is shared between translations from stylistic or language-specific variation. We show careful large-scale comparisons between contrastive and generation-based approaches for learning multilingual text embeddings, a comparison that has not been done to the best of our knowledge despite the popularity of these approaches. We evaluate this method on a suite of tasks including semantic similarity, bitext mining, and cross-lingual question retrieval -- the last of which we introduce in this paper. Overall, our Variational Multilingual Source-Separation Transformer (VMSST) model outperforms both a strong contrastive and generative baseline on these tasks.
translated by 谷歌翻译
在本文中,我们介绍了DOCMT5,这是一种预先培训的多语言序列到序列语言模型,具有大规模并行文档。虽然以前的方法专注于利用句子级并行数据,但我们尝试构建一个可以理解和生成长文件的通用预训练模型。我们提出了一个简单有效的预训练目标 - 文件重新排序机翻译(DRMT),其中需要翻译和屏蔽的输入文件。 DRMT在各种文档级生成任务中对强大基线带来一致的改进,包括超过12个BLEU积分,用于观看语言对文件级MT,超过7个BLEU积分,用于看不见的语言对文件级MT和3胭脂-1位为言语对交叉术概要。我们在WMT20 De-en和IWSLT15 Zh-ZH文档翻译任务中实现了最先进的(SOTA)。我们还对文档预培训的各种因素进行了广泛的分析,包括(1)预培训数据质量的影响和(2)组合单语言和交叉训练的影响。我们计划公开使用我们的模型检查站。
translated by 谷歌翻译
与辅助语言的元学习已经表明了对交叉语言自然语言处理的有希望的改进。然而,以前的研究采样使用相同语言的元培训和元测试数据,这限制了模型交叉传输的能力。在本文中,我们提出了XLA-MAML,在元学习阶段执行直接交叉调整。我们对自然语言推理和问题进行零射击和几次拍摄实验。实验结果表明了我们在不同语言,任务和预磨料模型中的方法的有效性。我们还对元学习的各种交叉特定设置进行了分析,包括采样策略和并行性。
translated by 谷歌翻译
This paper demonstrates that multilingual denoising pre-training produces significant performance gains across a wide variety of machine translation (MT) tasks. We present mBART -a sequence-to-sequence denoising auto-encoder pre-trained on large-scale monolingual corpora in many languages using the BART objective . mBART is the first method for pre-training a complete sequence-to-sequence model by denoising full texts in multiple languages, while previous approaches have focused only on the encoder, decoder, or reconstructing parts of the text. Pre-training a complete model allows it to be directly fine tuned for supervised (both sentence-level and document-level) and unsupervised machine translation, with no task-specific modifications. We demonstrate that adding mBART initialization produces performance gains in all but the highest-resource settings, including up to 12 BLEU points for low resource MT and over 5 BLEU points for many document-level and unsupervised models. We also show it also enables new types of transfer to language pairs with no bi-text or that were not in the pre-training corpus, and present extensive analysis of which factors contribute the most to effective pre-training.
translated by 谷歌翻译
一些基于变压器的模型可以执行跨语言转移学习:这些模型可以通过一种语言对特定任务进行培训,并以另一种语言的同一任务给予相对良好的结果,尽管仅在单语任务中进行了预先培训。但是,关于这些基于变压器的模型是否学习跨语言的通用模式,目前尚无共识。我们提出了一种单词级的任务不可能的方法,以评估此类模型构建的上下文化表示的对齐方式。我们表明,与以前的方法相比,我们的方法提供了更准确的翻译成对,以评估单词级别对齐。我们的结果表明,基于多语言变压器模型的某些内部层优于其他明确对齐的表示,甚至根据多语言对齐的更严格的定义,更是如此。
translated by 谷歌翻译
Multilingual Pretrained Language Models (MPLMs) have shown their strong multilinguality in recent empirical cross-lingual transfer studies. In this paper, we propose the Prompts Augmented by Retrieval Crosslingually (PARC) pipeline to improve the zero-shot performance on low-resource languages (LRLs) by augmenting the context with semantically similar sentences retrieved from a high-resource language (HRL) as prompts. PARC improves the zero-shot performance on three downstream tasks (binary sentiment classification, topic categorization and natural language inference) with multilingual parallel test sets across 10 LRLs covering 6 language families in both unlabeled settings (+5.1%) and labeled settings (+16.3%). PARC-labeled also outperforms the finetuning baseline by 3.7%. We find a significant positive correlation between cross-lingual transfer performance on one side, and the similarity between the high- and low-resource languages as well as the amount of low-resource pretraining data on the other side. A robustness analysis suggests that PARC has the potential to achieve even stronger performance with more powerful MPLMs.
translated by 谷歌翻译