与辅助语言的元学习已经表明了对交叉语言自然语言处理的有希望的改进。然而,以前的研究采样使用相同语言的元培训和元测试数据,这限制了模型交叉传输的能力。在本文中,我们提出了XLA-MAML,在元学习阶段执行直接交叉调整。我们对自然语言推理和问题进行零射击和几次拍摄实验。实验结果表明了我们在不同语言,任务和预磨料模型中的方法的有效性。我们还对元学习的各种交叉特定设置进行了分析,包括采样策略和并行性。
translated by 谷歌翻译
一种有效的横向传输方法是在一种语言中微调在监督数据集上的双语或多语言模型,并以零拍方式在另一种语言上进行评估。在培训时间或推理时间翻译例子也是可行的替代方案。然而,存在与文献中很少有关的这些方法相关的成本。在这项工作中,我们在其有效性(例如,准确性),开发和部署成本方面分析交叉语言方法,以及推理时间的延迟。我们的三个任务的实验表明最好的交叉方法是高度任务依赖性的。最后,通过结合零射和翻译方法,我们在这项工作中使用的三个数据集中实现了最先进的。基于这些结果,我们对目标语言手动标记的培训数据有所了解。代码和翻译的数据集可在https://github.com/unicamp-dl/cross-lingsual-analysis上获得
translated by 谷歌翻译
Much recent progress in applications of machine learning models to NLP has been driven by benchmarks that evaluate models across a wide variety of tasks. However, these broad-coverage benchmarks have been mostly limited to English, and despite an increasing interest in multilingual models, a benchmark that enables the comprehensive evaluation of such methods on a diverse range of languages and tasks is still missing. To this end, we introduce the Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark, a multi-task benchmark for evaluating the cross-lingual generalization capabilities of multilingual representations across 40 languages and 9 tasks. We demonstrate that while models tested on English reach human performance on many tasks, there is still a sizable gap in the performance of cross-lingually transferred models, particularly on syntactic and sentence retrieval tasks. There is also a wide spread of results across languages. We release the benchmark 1 to encourage research on cross-lingual learning methods that transfer linguistic knowledge across a diverse and representative set of languages and tasks.
translated by 谷歌翻译
将语义解析器定位以支持新语言需要有效的跨语性概括。最近的工作发现了机器翻译或零击方法的成功,尽管这些方法可能难以模拟母语人士如何提出问题。我们考虑如何有效利用新语言的最小注释示例来进行几次跨语性语义解析。我们引入了一阶元学习算法,以在跨语性转移过程中训练具有最大样品效率的语义解析器。我们的算法使用高资源语言来训练解析器,并同时优化低资源语言的跨语性概括。 ATIS上六种语言的结果表明,我们的泛化步骤的组合产生了准确的语义解析器,以每种新语言中的源培训数据$ 10%的$ 10%。我们的方法还使用英语对蜘蛛的竞争模型进行训练,并将其推广到中文,同样对$ 10%的培训数据进行了采样。
translated by 谷歌翻译
Universal cross-lingual sentence embeddings map semantically similar cross-lingual sentences into a shared embedding space. Aligning cross-lingual sentence embeddings usually requires supervised cross-lingual parallel sentences. In this work, we propose mSimCSE, which extends SimCSE to multilingual settings and reveal that contrastive learning on English data can surprisingly learn high-quality universal cross-lingual sentence embeddings without any parallel data. In unsupervised and weakly supervised settings, mSimCSE significantly improves previous sentence embedding methods on cross-lingual retrieval and multilingual STS tasks. The performance of unsupervised mSimCSE is comparable to fully supervised methods in retrieving low-resource languages and multilingual STS. The performance can be further enhanced when cross-lingual NLI data is available. Our code is publicly available at https://github.com/yaushian/mSimCSE.
translated by 谷歌翻译
由于低资源语言缺乏培训数据,交叉语言机器阅读理解(XMRC)是挑战。最近的方法仅使用培训数据,以资源丰富的语言,如英语到微调大规模的跨语法预训练的语言模型。由于语言之间的巨大差异,仅由源语言微调的模型可能无法对目标语言表现良好。有趣的是,我们观察到,虽然先前方法预测的前1个结果可能经常无法达到地面真理答案,但是正确的答案通常包含在Top-K预测结果中。基于这种观察,我们开发了一种两级方法来提高模型性能。召回的第一阶段目标:我们设计一个艰难的学习(HL)算法,以最大化顶级预测包含准确答案的可能性。第二阶段专注于精确:开发了答案感知对比学习(AA-CL)机制,以了解准确答案和其他候选者之间的细差异。我们的广泛实验表明,我们的模型在两个交叉语言MRC基准数据集上显着优于一系列强大的基线。
translated by 谷歌翻译
GPT-3等大型自回归语言模型是几秒钟的学习者,可以在没有微调的情况下执行各种语言任务。虽然已知这些模型能够共同代表许多不同的语言,但他们的培训数据由英语主导,可能限制了它们的交叉概括。在这项工作中,我们在覆盖多种语言的平衡语料库上培训多语言自回归语言模型,并在广泛的任务中研究他们几乎没有零点的学习能力。我们最大的模型,具有75亿参数,在20多种代表语言中,在几种代表语言中,在几种代表性语言中,在几种代表性语言中,在多语言型号推理中表现出可比大小的GPT-3(在0次设置和0次拍摄设置中的绝对精度改善+ 7.4% 4-拍摄设置中的9.4%)和自然语言推理(每次拍摄和4次设置中的每一个+ 5.4%)。在Flores-101机器翻译基准测试中,我们的模型优于GPT-3在182个翻译方向上有32个培训例子,同时超过45个方向的官方监督基线。我们介绍了模型成功和失败的位置的详细分析,特别是它尤其显示在某些任务中实现交叉语境的内容学习,而仍然存在改善表面的鲁棒性和适应没有a的任务的余地自然冻结形式。最后,我们评估我们在仇恨语音检测中以五种语言的仇恨语音检测的模型,并发现它具有与可比大小的GPT-3模型类似的限制。
translated by 谷歌翻译
以前的工作主要侧重于改善NLU任务的交叉传输,具有多语言预用编码器(MPE),或提高与伯特的监督机器翻译的性能。然而,探索了,MPE是否可以有助于促进NMT模型的交叉传递性。在本文中,我们专注于NMT中的零射频转移任务。在此任务中,NMT模型培训,只有一个语言对的并行数据集和搁置架MPE,然后它直接测试在零拍语言对上。我们为此任务提出了Sixt,一个简单而有效的模型。 SIXT利用了两阶段培训计划利用MPE,并进一步改进了解离编码器和容量增强的解码器。使用此方法,SIMPT显着优于MBart,这是一个用于NMT的预磨削的多语言编码器解码器模型,平均改善了14个源语言的零拍摄的任何英语测试集上的7.1 BLEU。此外,培训计算成本和培训数据较少,我们的模型在15个任何英语测试组上实现了比Criss和M2M-100,两个强大的多语言NMT基线更好的性能。
translated by 谷歌翻译
Translating training data into many languages has emerged as a practical solution for improving cross-lingual transfer. For tasks that involve span-level annotations, such as information extraction or question answering, an additional label projection step is required to map annotated spans onto the translated texts. Recently, a few efforts have utilized a simple mark-then-translate method to jointly perform translation and projection by inserting special markers around the labeled spans in the original sentence. However, as far as we are aware, no empirical analysis has been conducted on how this approach compares to traditional annotation projection based on word alignment. In this paper, we present an extensive empirical study across 42 languages and three tasks (QA, NER, and Event Extraction) to evaluate the effectiveness and limitations of both methods, filling an important gap in the literature. Experimental results show that our optimized version of mark-then-translate, which we call EasyProject, is easily applied to many languages and works surprisingly well, outperforming the more complex word alignment-based methods. We analyze several key factors that affect end-task performance, and show EasyProject works well because it can accurately preserve label span boundaries after translation. We will publicly release all our code and data.
translated by 谷歌翻译
可靠的评估基准是为了可复制性和全面性而设计的,在机器学习方面取得了进步。但是,由于缺乏多语言基准,视觉和语言研究主要集中在英语任务上。为了填补这一空白,我们介绍了图像的语言理解评估基准。 Iglue通过汇总已有的数据集并创建新的数据来汇集 - 视觉问题回答,跨模式检索,扎根的推理以及跨20种不同语言的扎根成本。我们的基准测试能够评估多语言多模型用于转移学习的模型,不仅在零弹位设置中,而且还以新定义的少数图学习设置。根据对可用最新模型的评估,我们发现翻译测试转移优于零弹性转移,并且对于许多任务而言,很难利用射击的学习。此外,下游性能部分用可用的未标记文本数据进行预处理来解释,并且仅通过目标源语言的类型学距离而微弱。我们希望通过向社区释放基准来鼓励该领域的未来研究工作。
translated by 谷歌翻译
多语言语言模型(\ mllms),如mbert,xlm,xlm-r,\ textit {etc。}已成为一种可行的选择,使预先估计到大量语言的力量。鉴于他们的成功在零射击转移学习中,在(i)建立更大的\ mllms〜覆盖了大量语言(ii)创建覆盖更广泛的任务和语言来评估的详尽工作基准mllms〜(iii)分析单音零点,零拍摄交叉和双语任务(iv)对Monolingual的性能,了解\ mllms〜(v)增强(通常)学习的通用语言模式(如果有的话)有限的容量\ mllms〜以提高他们在已见甚至看不见语言的表现。在这项调查中,我们审查了现有的文学,涵盖了上述与\ MLLMS有关的广泛研究领域。根据我们的调查,我们建议您有一些未来的研究方向。
translated by 谷歌翻译
MARCO排名数据集已广泛用于培训IR任务的深度学习模型,在不同的零射击方案上实现了相当大的效果。但是,这种类型的资源是英语以外的语言的稀缺。在这项工作中,我们呈现MMARCO,MS Marco段落的多语言版本,该数据集包括使用机器翻译创建的13种语言。我们通过微调单语和多语言重新排名模型以及此数据集的密集多语言模型进行了评估。实验结果表明,在我们翻译的数据集上微调微调的多语言模型可以单独对原始英文版的模型进行微调的卓越效果。我们蒸馏的多语言RE-RANKER与非蒸馏模型具有竞争力,而参数较少的5.4倍。最后,我们展现了翻译质量和检索效果之间的正相关性,提供了证据,即翻译方法的改进可能导致多语言信息检索的改进。翻译的数据集和微调模型可在https://github.com/unicamp-dl/mmarco.git上获得。
translated by 谷歌翻译
有监督的基于深度学习的方法已应用于以任务为导向的对话框,并在有足够数量的培训示例可用时对有限的域和语言应用有效。在实践中,这些方法遭受了域驱动设计和资源不足的语言的缺点。域和语言模型应该随着问题空间的发展而增长和变化。一方面,对转移学习的研究证明了基于多语言变压器模型学习语义丰富的表示的跨语性能力。另一方面,除了上述方法之外,元学习还能够开发任务和语言学习算法,能够实现泛滥。在这种情况下,本文提出了使用典型的神经网络和基于多语言变压器的模型来研究使用协同进行几次学习的跨语性可传递性。自然语言的实验理解多亚提斯++语料库的任务表明,我们的方法基本上改善了低资源和高资源语言之间观察到的转移学习表现。更普遍地说,我们的方法证实,可以将具有特定语言的有意义的潜在空间推广到使用元学习的情况下看不见和资源不足的潜在空间。
translated by 谷歌翻译
Pre-trained multilingual language models show significant performance gains for zero-shot cross-lingual model transfer on a wide range of natural language understanding (NLU) tasks. Previously, for zero-shot cross-lingual evaluation, pre-trained models are only fine-tuned on English data and tested on a variety of target languages. In this paper, we do cross-lingual evaluation on various NLU tasks (sentence classification, sequence labeling, question answering) using prompt-tuning and compare it with fine-tuning. The results show that prompt tuning achieves much better cross-lingual transfer than fine-tuning across datasets, with only 0.1% to 0.3% tuned parameters. Additionally, we demonstrate through the analysis that prompt tuning can have better cross-lingual transferability of representations on downstream tasks with better aligned decision boundaries.
translated by 谷歌翻译
对于许多任务,基于变压器的体系结构已经实现了最新的结果,从而导致实践从使用特定于任务的架构到预先训练的语言模型的微调。持续的趋势包括具有越来越多的数据和参数的培训模型,这需要大量资源。它导致了强有力的搜索,以提高基于仅针对英语评估的算法和硬件改进的算法和硬件改进。这引发了有关其可用性的疑问,当应用于小规模的学习问题时,对于资源不足的语言任务,有限的培训数据可用。缺乏适当尺寸的语料库是应用数据驱动和转移学习的方法的障碍。在本文中,我们建立了致力于基于变压器模型的可用性的最新努力,并建议评估这些改进的法语表现,而法语的效果很少。我们通过通过数据增强,超参数优化和跨语性转移来调查各种培训策略来解决与数据稀缺有关的不稳定。我们还为法国弗拉伯特(Fralbert)引入了一种新的紧凑型模型,该模型在低资源环境中被证明具有竞争力。
translated by 谷歌翻译
Multi-lingual language models (LM), such as mBERT, XLM-R, mT5, mBART, have been remarkably successful in enabling natural language tasks in low-resource languages through cross-lingual transfer from high-resource ones. In this work, we try to better understand how such models, specifically mT5, transfer *any* linguistic and semantic knowledge across languages, even though no explicit cross-lingual signals are provided during pre-training. Rather, only unannotated texts from each language are presented to the model separately and independently of one another, and the model appears to implicitly learn cross-lingual connections. This raises several questions that motivate our study, such as: Are the cross-lingual connections between every language pair equally strong? What properties of source and target language impact the strength of cross-lingual transfer? Can we quantify the impact of those properties on the cross-lingual transfer? In our investigation, we analyze a pre-trained mT5 to discover the attributes of cross-lingual connections learned by the model. Through a statistical interpretation framework over 90 language pairs across three tasks, we show that transfer performance can be modeled by a few linguistic and data-derived features. These observations enable us to interpret cross-lingual understanding of the mT5 model. Through these observations, one can favorably choose the best source language for a task, and can anticipate its training data demands. A key finding of this work is that similarity of syntax, morphology and phonology are good predictors of cross-lingual transfer, significantly more than just the lexical similarity of languages. For a given language, we are able to predict zero-shot performance, that increases on a logarithmic scale with the number of few-shot target language data points.
translated by 谷歌翻译
While prior work has established that the use of parallel data is conducive for cross-lingual learning, it is unclear if the improvements come from the data itself, or if it is the modeling of parallel interactions that matters. Exploring this, we examine the usage of unsupervised machine translation to generate synthetic parallel data, and compare it to supervised machine translation and gold parallel data. We find that even model generated parallel data can be useful for downstream tasks, in both a general setting (continued pretraining) as well as the task-specific setting (translate-train), although our best results are still obtained using real parallel data. Our findings suggest that existing multilingual models do not exploit the full potential of monolingual data, and prompt the community to reconsider the traditional categorization of cross-lingual learning approaches.
translated by 谷歌翻译
我们介绍了关于多语言信息访问(MIA)2022共享任务的研讨会的结果,评估了16种类型上多样性的语言中的跨语性开放回程答案(QA)系统。在此任务中,我们在14种类型上多样化的语言中调整了两个大规模的跨语性开放式质疑QA数据集,并使用了2种代表性不足的语言中的新注释的开放式QA数据:Tagalog和Tamil。四个团队提交了他们的系统。利用迭代开采的最佳系统是不同的负面示例和较大的预审慎模型达到32.2 F1,表现优于我们的基线4.5分。第二最佳系统使用实体感知的上下文化表示文档检索,并在泰米尔语(20.8 F1)方面取得了重大改进,而其他大多数系统的得分几乎为零。
translated by 谷歌翻译
在过去几年中,已经提出了多语言预训练的语言模型(PLMS)的激增,以实现许多交叉曲线下游任务的最先进的性能。但是,了解为什么多语言PLMS表现良好仍然是一个开放域。例如,目前尚不清楚多语言PLM是否揭示了不同语言的一致令牌归因。要解决此问题,请在本文中提出了令牌归因(CCTA)评估框架的交叉致新一致性。三个下游任务中的广泛实验表明,多语言PLMS为多语素同义词分配了显着不同的归因。此外,我们有以下观察结果:1)当它用于培训PLMS时,西班牙语在不同语言中实现了最常见的令牌归属;2)令牌归属的一致性与下游任务中的性能强烈相关。
translated by 谷歌翻译
几乎没有射击转移通常显示出比零射击转移〜\ c​​ite {lauscher2020zero}的大幅增长,这实际上是对基于多语言的基于模型的系统的完全监督和无监督的学习方法之间的一个有用的权衡。本文探讨了选择注释数据的各种策略,这些策略可能会导致更好的几杆转移。所提出的方法依赖于多种措施,例如使用$ n $ gram语言模型,预测性熵和梯度嵌入。我们提出了一种用于序列标记任务的损失嵌入方法,该方法诱导了类似于梯度嵌入的多样性和不确定性采样。评估了建议的数据选择策略,并将最多20种语言的POS标签,NER和NLI任务进行比较。我们的实验表明,基于梯度和损失嵌入的策略始终优于随机数据选择基线,并且随着零拍传输的初始性能而变化。此外,即使模型使用原始特定任务特定标记的训练数据进行了零拍传输的较低比例,提出的方法也显示出改进的相似趋势。
translated by 谷歌翻译