在本文中,我们为通过深神经网络参数参数的离散时间动力学系统的消散性和局部渐近稳定提供了足够的条件。我们利用神经网络作为点式仿射图的表示,从而揭示其本地线性操作员并使其可以通过经典的系统分析和设计方法访问。这使我们能够通过评估其耗散性并估算其固定点和状态空间分区来“打开神经动力学系统行为的黑匣子”。我们将这些局部线性运算符的规范与耗散系统中存储的能量的规范联系起来,其供应率由其总偏差项表示。从经验上讲,我们分析了这些局部线性运算符的动力学行为和特征值光谱的差异,具有不同的权重,激活函数,偏置项和深度。
translated by 谷歌翻译
Deep Markov Models(DMM)是Markov模型的可扩展和表达概括的生成模型,用于表示,学习和推理问题。但是,这些模型的基本随机稳定性保证尚未得到彻底调查。在本文中,我们提供了在动态系统的背景下定义的DMM随机稳定性的充分条件,并提出了一种基于深神经网络建模的概率地图收缩的稳定性分析方法。我们在具有高斯分布的DMMS的稳定性和整体动态行为的稳定性和整体动态行为之间建立了与高斯分布的稳定性和总体动态行为之间的连接。基于该理论,我们提出了一些具有保证稳定性的受约束DMM的实用方法。我们通过使用所提出的稳定性约束,通过直观的数值实验凭证证实我们的理论结果。
translated by 谷歌翻译
收缩理论是一种分析工具,用于研究以均匀的正面矩阵定义的收缩度量下的非自主(即,时变)非线性系统的差动动力学,其存在导致增量指数的必要和充分表征多种溶液轨迹彼此相互稳定性的稳定性。通过使用平方差分长度作为Lyapunov样功能,其非线性稳定性分析向下沸腾以找到满足以表达为线性矩阵不等式的稳定条件的合适的收缩度量,表明可以在众所周知的线性系统之间绘制许多平行线非线性系统理论与收缩理论。此外,收缩理论利用了与比较引理结合使用的指数稳定性的优越稳健性。这产生了基于神经网络的控制和估计方案的急需安全性和稳定性保证,而不借助使用均匀渐近稳定性的更涉及的输入到状态稳定性方法。这种独特的特征允许通过凸优化来系统构造收缩度量,从而获得了由于扰动和学习误差而在外部扰动的时变的目标轨迹和解决方案轨迹之间的距离上的明确指数界限。因此,本文的目的是介绍了收缩理论的课程概述及其在确定性和随机系统的非线性稳定性分析中的优点,重点导出了各种基于学习和数据驱动的自动控制方法的正式鲁棒性和稳定性保证。特别是,我们提供了使用深神经网络寻找收缩指标和相关控制和估计法的技术的详细审查。
translated by 谷歌翻译
本文介绍了最近在文献中引入的二次神经网络的分析和设计,以及它们在动态系统的回归,分类,系统识别和控制中的应用。这些网络提供了几个优点,其中最重要的是该体系结构是设计的副产品,尚未确定a-priori,可以通过解决凸优化问题来完成他们的培训可以实现权重,并且输入输出映射可以通过二次形式在分析上表示。从几个示例中也可以看出,这些网络仅使用一小部分培训数据就可以很好地工作。纸质铸造回归,分类,系统识别,稳定性和控制设计作为凸优化问题的结果,可以用多项式时间算法有效地求解到全局最佳。几个示例将显示二次神经网络在应用中的有效性。
translated by 谷歌翻译
用于未知非线性系统的学习和合成稳定控制器是现实世界和工业应用的具有挑战性问题。 Koopman操作员理论允许通过直线系统和非线性控制系统的镜头通过线性系统和非线性控制系统的镜头来分析非线性系统。这些方法的关键思想,在于将非线性系统的坐标转换为Koopman可观察,这是允许原始系统(控制系统)作为更高尺寸线性(双线性控制)系统的坐标。然而,对于非线性控制系统,通过应用基于Koopman操作员的学习方法获得的双线性控制模型不一定是稳定的,因此,不保证稳定反馈控制的存在,这对于许多真实世界的应用来说是至关重要的。同时识别基于这些可稳定的Koopman的双线性控制系统以及相关的Koopman可观察到仍然是一个开放的问题。在本文中,我们提出了一个框架,以通过同时学习为基于Koopman的底层未知的非线性控制系统以及基于Koopman的控制Lyapunov函数(CLF)来识别和构造这些可稳定的双线性模型及其相关的可观察能力。双线性模型使用学习者和伪空。我们提出的方法从而为非线性控制系统具有未知动态的非线性控制系统提供了可证明的全球渐近稳定性的保证。提供了数值模拟,以验证我们提出的稳定反馈控制器为未知的非线性系统的效力。
translated by 谷歌翻译
Deep Neural Networks (DNNs) training can be difficult due to vanishing and exploding gradients during weight optimization through backpropagation. To address this problem, we propose a general class of Hamiltonian DNNs (H-DNNs) that stem from the discretization of continuous-time Hamiltonian systems and include several existing DNN architectures based on ordinary differential equations. Our main result is that a broad set of H-DNNs ensures non-vanishing gradients by design for an arbitrary network depth. This is obtained by proving that, using a semi-implicit Euler discretization scheme, the backward sensitivity matrices involved in gradient computations are symplectic. We also provide an upper-bound to the magnitude of sensitivity matrices and show that exploding gradients can be controlled through regularization. Finally, we enable distributed implementations of backward and forward propagation algorithms in H-DNNs by characterizing appropriate sparsity constraints on the weight matrices. The good performance of H-DNNs is demonstrated on benchmark classification problems, including image classification with the MNIST dataset.
translated by 谷歌翻译
复发性神经网络(RNN)是用于建模顺序和时间序列数据的广泛机器学习工具。众所周知,他们很难训练,因为他们的损失梯度在训练过程中倾向于饱和或差异。这被称为爆炸和消失的梯度问题。对该问题的先前解决方案要么建立在具有门控内存缓冲区的相当复杂的,专门设计的体系结构上,要么 - 最近 - 施加的约束,以确保收敛到固定点或限制(限制复发矩阵)。然而,这种限制传达了对RNN表现性的严重局限性。绝对的内在动态(例如多稳定性或混乱)被禁用。这本质上是在大自然和社会中遇到的许多(如果不是大多数时间)的混乱性质的脱节性。在科学应用中,尤其是一个旨在重建基本动力学系统的科学应用程序。在这里,我们通过将RNN培训期间的损耗梯度与RNN生成的轨道的lyapunov谱相关联,对该问题提供了全面的理论处理。我们从数学上证明,产生稳定平衡或环状行为的RNN具有有限的梯度,而混沌动力学的RNN梯度总是不同。基于这些分析和见解,我们建议如何根据系统的Lyapunov Spectrum,如何优化混乱数据的训练过程,无论使用的RNN架构如何。
translated by 谷歌翻译
Learning-enabled control systems have demonstrated impressive empirical performance on challenging control problems in robotics, but this performance comes at the cost of reduced transparency and lack of guarantees on the safety or stability of the learned controllers. In recent years, new techniques have emerged to provide these guarantees by learning certificates alongside control policies -- these certificates provide concise, data-driven proofs that guarantee the safety and stability of the learned control system. These methods not only allow the user to verify the safety of a learned controller but also provide supervision during training, allowing safety and stability requirements to influence the training process itself. In this paper, we provide a comprehensive survey of this rapidly developing field of certificate learning. We hope that this paper will serve as an accessible introduction to the theory and practice of certificate learning, both to those who wish to apply these tools to practical robotics problems and to those who wish to dive more deeply into the theory of learning for control.
translated by 谷歌翻译
我们开发了一种多功能的深神经网络体系结构,称为Lyapunov-net,以近似高维动力学系统的Lyapunov函数。Lyapunov-net保证了积极的确定性,因此可以轻松地训练它以满足负轨道衍生物条件,这仅在实践中的经验风险功能中呈现单个术语。与现有方法相比,这显着减少了超参数的数量。我们还提供了关于Lyapunov-NET及其复杂性界限的近似能力的理论理由。我们证明了所提出的方法在涉及多达30维状态空间的非线性动力系统上的效率,并表明所提出的方法显着优于最新方法。
translated by 谷歌翻译
现代机器学习的高级应用可能涉及培训的网络的组合,如DeepMind的alphago等壮观系统所用的。以有效且稳定的方式递归建立这种组合,同时还允许持续改进各个网络 - 作为生物网络的自然 - 将需要新的分析工具。本文通过建立广泛类别的非线性反复网络和神经杂波的收缩性能,并展示这些量化的性能如何拒绝以系统方式递归地构建稳定的网络网络。结果还可用于稳定地将经常性网络和物理系统组合,具有量化的收缩特性。类似地,它们可以应用于认知的模块化计算模型。我们在基准顺序任务(例如允许的顺序MNIST)上执行这些组合网络的实验,以展示它们以可释放的稳定方式在长时间秒的处理信息的能力。
translated by 谷歌翻译
经常性神经网络(RNNS)是强大的动态模型,广泛用于机器学习(ML)和神经科学。之前的理论作品集中在具有添加剂相互作用的RNN上。然而,门控 - 即乘法 - 相互作用在真神经元中普遍存在,并且也是ML中最佳性能RNN的中心特征。在这里,我们表明Gating提供灵活地控制集体动态的两个突出特征:i)时间尺寸和ii)维度。栅极控制时间尺度导致新颖的稳定状态,网络用作灵活积分器。与以前的方法不同,Gating允许这种重要功能而没有参数微调或特殊对称。门还提供一种灵活的上下文相关机制来重置存储器跟踪,从而补充存储器功能。调制维度的栅极可以诱导新颖的不连续的混沌转变,其中输入将稳定的系统推向强的混沌活动,与通常稳定的输入效果相比。在这种转变之上,与添加剂RNN不同,关键点(拓扑复杂性)的增殖与混沌动力学的外观解耦(动态复杂性)。丰富的动态总结在相图中,从而为ML从业者提供了一个原理参数初始化选择的地图。
translated by 谷歌翻译
我们为特殊神经网络架构,称为运营商复发性神经网络的理论分析,用于近似非线性函数,其输入是线性运算符。这些功能通常在解决方案算法中出现用于逆边值问题的问题。传统的神经网络将输入数据视为向量,因此它们没有有效地捕获与对应于这种逆问题中的数据的线性运算符相关联的乘法结构。因此,我们介绍一个类似标准的神经网络架构的新系列,但是输入数据在向量上乘法作用。由较小的算子出现在边界控制中的紧凑型操作员和波动方程的反边值问题分析,我们在网络中的选择权重矩阵中促进结构和稀疏性。在描述此架构后,我们研究其表示属性以及其近似属性。我们还表明,可以引入明确的正则化,其可以从所述逆问题的数学分析导出,并导致概括属性上的某些保证。我们观察到重量矩阵的稀疏性改善了概括估计。最后,我们讨论如何将运营商复发网络视为深度学习模拟,以确定诸如用于从边界测量的声波方程中重建所未知的WAVESTED的边界控制的算法算法。
translated by 谷歌翻译
在本文中,我们提出了一个新型的非线性观察者,称为神经观察者,以通过将神经网络(NN)引入观察者的设计,以实现线性时间传播(LTI)系统的观察任务和不确定的非线性系统。通过探索NN代表向NN映射矢量的方法,我们从LTI和不确定的非线性系统中得出了稳定性分析(例如,指数收敛速率),这些系统仅使用线性矩阵不平等(LMIS)为解决观察问题铺平了道路。值得注意的是,为不确定系统设计的神经观察者基于主动扰动拒绝控制(ADRC)的意识形态,该思想可以实时测量不确定性。 LMI结果也很重要,因为我们揭示了LMI溶液存在系统矩阵的可观察性和可控性。最后,我们在三个模拟案例上验证神经观察者的可用性,包括X-29A飞机模型,非线性摆和四轮转向车辆。
translated by 谷歌翻译
隐式神经网络是一般的学习模型,可以用隐式代数方程替换传统的馈电模型中的层。与传统学习模型相比,隐式网络提供竞争性能和降低的内存消耗。然而,它们可以对输入对抗性扰动保持脆弱。本文提出了隐式神经网络的稳健性验证的理论和计算框架;我们的框架混合在一起混合单调系统理论和收缩理论。首先,给定隐式神经网络,我们介绍了一个相关的嵌入式网络,并显示,给定$ \ ell_ infty $ -norm框限制对输入,嵌入式网络提供$ \ ell_ \ idty $ -norm box超值给定网络的输出。其次,使用$ \ ell _ {\ infty} $ - 矩阵措施,我们为原始和嵌入式系统的良好提出了足够的条件,并设计了一种迭代算法来计算$ \ e _ {\ infty} $ - norm box鲁棒性利润率和可达性和分类问题。第三,独立价值,我们提出了一种新颖的相对分类器变量,导致认证问题的经过认证的对抗性鲁棒性更严格的界限。最后,我们对在Mnist DataSet上培训的非欧几里德单调运营商网络(Nemon)上进行数值模拟。在这些模拟中,我们比较了我们的混合单调对收缩方法的准确性和运行时间与文献中的现有鲁棒性验证方法,以估算认证的对抗性鲁棒性。
translated by 谷歌翻译
我们为研究通过将噪声注入隐藏状态而训练的经常性神经网络(RNN)提供了一般框架。具体地,我们考虑RNN,其可以被视为由输入数据驱动的随机微分方程的离散化。该框架允许我们通过在小噪声制度中导出近似显式规范器来研究一般噪声注入方案的隐式正则化效果。我们发现,在合理的假设下,这种隐含的正规化促进了更平坦的最小值;它偏向具有更稳定动态的模型;并且,在分类任务中,它有利于具有较大分类余量的模型。获得了全局稳定性的充分条件,突出了随机稳定的现象,其中噪音注入可以在训练期间提高稳定性。我们的理论得到了经验结果支持,证明RNN对各种输入扰动具有改善的鲁棒性。
translated by 谷歌翻译
Identifying coordinate transformations that make strongly nonlinear dynamics approximately linear is a central challenge in modern dynamical systems. These transformations have the potential to enable prediction, estimation, and control of nonlinear systems using standard linear theory. The Koopman operator has emerged as a leading data-driven embedding, as eigenfunctions of this operator provide intrinsic coordinates that globally linearize the dynamics. However, identifying and representing these eigenfunctions has proven to be mathematically and computationally challenging. This work leverages the power of deep learning to discover representations of Koopman eigenfunctions from trajectory data of dynamical systems. Our network is parsimonious and interpretable by construction, embedding the dynamics on a low-dimensional manifold parameterized by these eigenfunctions. In particular, we identify nonlinear coordinates on which the dynamics are globally linear using a modified auto-encoder. We also generalize Koopman representations to include a ubiquitous class of systems that exhibit continuous spectra, ranging from the simple pendulum to nonlinear optics and broadband turbulence. Our framework parametrizes the continuous frequency using an auxiliary network, enabling a compact and efficient embedding, while connecting our models to half a century of asymptotics. In this way, we benefit from the power and generality of deep learning, while retaining the physical interpretability of Koopman embeddings.
translated by 谷歌翻译
数据科学和机器学习的进展已在非线性动力学系统的建模和模拟方面取得了重大改进。如今,可以准确预测复杂系统,例如天气,疾病模型或股市。预测方法通常被宣传为对控制有用,但是由于系统的复杂性,较大的数据集的需求以及增加的建模工作,这些细节经常没有得到解答。换句话说,自治系统的替代建模比控制系统要容易得多。在本文中,我们介绍了Quasimodo框架(量化模拟模拟模拟 - 优化),以将任意预测模型转换为控制系统,从而使数据驱动的替代模型的巨大进步可访问控制系统。我们的主要贡献是,我们通过自动化动力学(产生混合企业控制问题)来贸易控制效率,以获取任意,即使用的自主替代建模技术。然后,我们通过利用混合成员优化的最新结果来恢复原始问题的复杂性。 Quasimodo的优点是数据要求在控制维度方面的线性增加,性能保证仅依赖于使用的预测模型的准确性,而控制理论中的知识知识要求很少来解决复杂的控制问题。
translated by 谷歌翻译
稳定性认证并确定安全稳定的初始集是确保动态系统的操作安全性,稳定性和鲁棒性的两个重要问题。随着机器学习工具的出现,需要针对反馈循环中具有机器学习组件的系统来解决这些问题。为了开发一种关于神经网络(NN)控制的非线性系统的稳定性和稳定性的一般理论,提出了基于Lyapunov的稳定性证书,并进一步用于设计用于NN Controller和NN控制器和最大LIPSCHITZ绑定的。也是给定的安全操作域内内部相应的最大诱因(ROA)。为了计算这种强大的稳定NN控制器,它也最大化了系统的长期实用程序,提出了稳定性保证训练(SGT)算法。提出的框架的有效性通过说明性示例得到了验证。
translated by 谷歌翻译
本文提出了一种基于匹配不确定性的非线性系统的收缩指标和干扰估计的轨迹中心学习控制方法。该方法允许使用广泛的模型学习工具,包括深神经网络,以学习不确定的动态,同时仍然在整个学习阶段提供瞬态跟踪性能的保证,包括没有学习的特殊情况。在所提出的方法中,提出了一种扰动估计法,以估计不确定性的点值,具有预计估计误差限制(EEB)。学习的动态,估计的紊乱和EEB在强大的黎曼能量条件下并入,以计算控制法,即使学习模型较差,也能保证在整个学习阶段的所需轨迹对所需轨迹的指数趋同。另一方面,具有改进的精度,学习的模型可以在高级计划器中结合,以规划更好的性能,例如降低能耗和更短的旅行时间。建议的框架在平面Quadrotor导航示例上验证。
translated by 谷歌翻译
备忘录是一种非线性的两端电气元件,具有内存特征和纳米级特性,使我们能够设计出非常高密度的人工神经网络。为了增强内存属性,我们应该使用能够这样做的数学框架等数学框架。在这里,我们首先提出了两个神经元上的分数阶突触耦合Hopfield神经网络,然后将模型扩展到具有环形结构的神经网络,该神经网络由N子网络神经元组成,从而增加了网络中的同步。研究了平衡点稳定性的必要条件,突出了稳定性对分数值值和神经元数的依赖性。数值模拟和分叉分析以及Lyapunov指数在两种神经元的情况下进行了证实,该情况证实了理论发现,表明当系统的分数增加时,可能会导致混乱的途径。在N-Neuron情况下,据揭示了稳定性取决于子网络的结构和数量。
translated by 谷歌翻译