保护定律是理解,表征和建模非线性动力系统的关键理论和实用工具。但是,对于许多复杂的动态系统,难以识别相应的保守量,因此很难分析其动力学并建立高效,稳定的预测模型。当前发现保护定律的方法通常取决于详细的动态信息,例如运动方程或细粒度的时间测量,许多最新的建议还依赖于黑匣子参数深度学习方法。相反,我们将这项任务重新制定为一种多种学习问题,并提出了一种非参数方法,将最佳运输中的Wasserstein指标与扩散图相结合,以发现从动力学系统中采样的轨迹中变化的保守数量。我们在各种物理系统上测试了这种新方法$ \ unicode {x2014} $,包括保守的汉密尔顿系统,耗散系统和时空系统$ \ unicode {x2014} $保守数量并提取其价值。使用最佳运输理论和流形学习中的工具,我们提出的方法提供了一种直接的几何方法来识别既有坚固且可解释的保护定律,而无需明确的系统模型或准确的时间信息。
translated by 谷歌翻译
我们介绍了一种算法,用于计算采样歧管的测量测量算法,其依赖于对采样数据的植物嵌入的曲线图的模拟。我们的方法利用经典的结果在半导体分析和量子古典对应中,并形成用于学习数据集的歧管的技术的基础,随后用于高维数据集的非线性维度降低。我们以基于CoVID-19移动数据的聚类演示,从模型歧管中采样数据采样的数据,并通过集群演示来说明新的算法。最后,我们的方法揭示了数据采样和量化提供的离散化之间有趣的连接。
translated by 谷歌翻译
Experimental sciences have come to depend heavily on our ability to organize, interpret and analyze high-dimensional datasets produced from observations of a large number of variables governed by natural processes. Natural laws, conservation principles, and dynamical structure introduce intricate inter-dependencies among these observed variables, which in turn yield geometric structure, with fewer degrees of freedom, on the dataset. We show how fine-scale features of this structure in data can be extracted from \emph{discrete} approximations to quantum mechanical processes given by data-driven graph Laplacians and localized wavepackets. This data-driven quantization procedure leads to a novel, yet natural uncertainty principle for data analysis induced by limited data. We illustrate the new approach with algorithms and several applications to real-world data, including the learning of patterns and anomalies in social distancing and mobility behavior during the COVID-19 pandemic.
translated by 谷歌翻译
In this paper, we propose Wasserstein Isometric Mapping (Wassmap), a nonlinear dimensionality reduction technique that provides solutions to some drawbacks in existing global nonlinear dimensionality reduction algorithms in imaging applications. Wassmap represents images via probability measures in Wasserstein space, then uses pairwise Wasserstein distances between the associated measures to produce a low-dimensional, approximately isometric embedding. We show that the algorithm is able to exactly recover parameters of some image manifolds including those generated by translations or dilations of a fixed generating measure. Additionally, we show that a discrete version of the algorithm retrieves parameters from manifolds generated from discrete measures by providing a theoretical bridge to transfer recovery results from functional data to discrete data. Testing of the proposed algorithms on various image data manifolds show that Wassmap yields good embeddings compared with other global and local techniques.
translated by 谷歌翻译
我们开发一种方法来构造来自表示基本上非线性(或不可连锁的)动态系统的数据集构成低维预测模型,其中具有由有限许多频率的外部强制进行外部矫正的双曲线线性部分。我们的数据驱动,稀疏,非线性模型获得为低维,吸引动力系统的光谱子纤维(SSM)的降低的动态的延长正常形式。我们说明了数据驱动的SSM降低了高维数值数据集的功率和涉及梁振荡,涡旋脱落和水箱中的晃动的实验测量。我们发现,在未加工的数据上培训的SSM减少也在额外的外部强制下准确预测非线性响应。
translated by 谷歌翻译
Identifying coordinate transformations that make strongly nonlinear dynamics approximately linear is a central challenge in modern dynamical systems. These transformations have the potential to enable prediction, estimation, and control of nonlinear systems using standard linear theory. The Koopman operator has emerged as a leading data-driven embedding, as eigenfunctions of this operator provide intrinsic coordinates that globally linearize the dynamics. However, identifying and representing these eigenfunctions has proven to be mathematically and computationally challenging. This work leverages the power of deep learning to discover representations of Koopman eigenfunctions from trajectory data of dynamical systems. Our network is parsimonious and interpretable by construction, embedding the dynamics on a low-dimensional manifold parameterized by these eigenfunctions. In particular, we identify nonlinear coordinates on which the dynamics are globally linear using a modified auto-encoder. We also generalize Koopman representations to include a ubiquitous class of systems that exhibit continuous spectra, ranging from the simple pendulum to nonlinear optics and broadband turbulence. Our framework parametrizes the continuous frequency using an auxiliary network, enabling a compact and efficient embedding, while connecting our models to half a century of asymptotics. In this way, we benefit from the power and generality of deep learning, while retaining the physical interpretability of Koopman embeddings.
translated by 谷歌翻译
在计算物理和化学中,增强的采样方法是必不可少的,由于采样问题,原子模拟无法详尽地对动态系统的高维配置空间进行采样。一类增强的抽样方法通过识别一些缓慢的自由度,称为集体变量(CVS)并增强沿这些CVS的采样来起作用。选择CVS来分析和驱动采样并不是微不足道的,并且通常依赖于物理和化学直觉。尽管使用流形学习通常会从标准模拟中直接估算CVS,但这种方法无法通过增强的采样模拟为低维流形提供映射,因为学到的歧管的几何形状和密度是有偏见的。在这里,我们解决了这个关键问题,并根据各向异性扩散图提供了一个普遍的重新加权框架,以考虑到流形学习,该框架考虑了学习数据集是从偏见的概率分布中采样的。我们考虑基于构建马尔可夫链的流形学习方法,描述了高维样品之间的过渡概率。我们表明,我们的框架恢复了偏置效应,从而产生了正确描述平衡密度的CV。这种进步可以直接从增强的采样模拟生成的数据中直接使用流形学习来构建低维CV。我们称我们的框架重新持续的流形学习。我们表明,它可以在来自标准和增强采样模拟的数据上的许多流形学习技术中使用。
translated by 谷歌翻译
所有物理定律都被描述为状态变量之间的关系,其提供相关系统动态的完整和非冗余描述。然而,尽管计算功率和AI的普及,但识别隐藏状态变量本身的过程已经抵制了自动化。用于建模物理现象的大多数数据驱动方法仍然假设观察到的数据流已经对应于相关状态变量。关键挑战是仅给予高维观察数据,从头开始识别可能的状态变量集。在这里,我们提出了一种新的原理,用于确定观察到的系统可能具有多少状态变量,以及这些变量可以直接来自视频流。我们展示了使用各种物理动态系统的视频录制的这种方法的有效性,从弹性双摆到火焰。如果没有任何相关的物理知识,我们的算法发现观察到的动态的内在尺寸,并识别候选州变量集。我们建议这种方法可以帮助促进对越来越复杂的系统的理解,预测和控制。项目网站是:https://www.cs.columbia.edu/~bchen/nebural-tate-variables
translated by 谷歌翻译
We investigate the parameterization of deep neural networks that by design satisfy the continuity equation, a fundamental conservation law. This is enabled by the observation that any solution of the continuity equation can be represented as a divergence-free vector field. We hence propose building divergence-free neural networks through the concept of differential forms, and with the aid of automatic differentiation, realize two practical constructions. As a result, we can parameterize pairs of densities and vector fields that always exactly satisfy the continuity equation, foregoing the need for extra penalty methods or expensive numerical simulation. Furthermore, we prove these models are universal and so can be used to represent any divergence-free vector field. Finally, we experimentally validate our approaches by computing neural network-based solutions to fluid equations, solving for the Hodge decomposition, and learning dynamical optimal transport maps.
translated by 谷歌翻译
从模型分析和机器学习中的比较到医疗数据集集合中的趋势发现,需要有效地比较和表示具有未知字段的数据集跨越各个字段。我们使用歧管学习来比较不同数据集的固有几何结构,通过比较其扩散操作员,对称阳性定义(SPD)矩阵,这些矩阵与连续的拉普拉斯 - 贝特拉米操作员与离散样品的近似相关。现有方法通常假设已知的数据对齐,并以点数的方式比较此类运算符。取而代之的是,我们利用SPD矩阵的Riemannian几何形状比较了这些操作员并根据log-euclidean Metric的下限定义了新的理论动机距离。我们的框架有助于比较具有不同大小,功能数量和测量方式的数据集中表达的数据歧管的比较。我们的日志 - 欧几里德签名(LES)距离恢复了有意义的结构差异,在各种应用领域的表现都优于竞争方法。
translated by 谷歌翻译
在从蛋白质折叠到材料发现的许多领域中,采样分子系统的相空间 - 更普遍地是通过随机微分方程有效建模的复杂系统的相位空间。这些问题本质上通常是多尺度的:可以用少数“慢速”反应坐标参数参数的低维有效自由能表面来描述它们;其余的“快速”自由度填充了反应坐标值的平衡度量。有关此类问题的抽样程序用于估计有效的自由能差以及相对于条件平衡分布的合奏平均值;后者平均值导致有效减少动态模型的关闭。多年来,已经开发了增强的采样技术与分子模拟。引人入胜的类比是与机器学习领域(ML)产生的,在该领域中,生成的对抗网络可以从低维概率分布中产生高维样品。该样本生成从有关其低维表示的信息中返回模型状态的合理高维空间实现。在这项工作中,我们提出了一种方法,该方法将基于物理学的模拟和偏置方法与基于ML的条件生成对抗网络对条件分布进行采样,以实现相同的任务。我们调节精细规模实现的“粗糙描述符”可以先验地知道,也可以通过非线性维度降低来学习。我们建议这可能会带来两种方法的最佳功能:我们证明,夫妻CGAN具有基于物理学的增强采样技术的框架可以改善多尺度SDE动力学系统采样,甚至显示出对增加复杂性系统的希望。
translated by 谷歌翻译
我们提供了一个方程/可变的免费机器学习(EVFML)框架,以控制通过基于微观/代理模拟器建模的复杂/多尺度系统的集体动力学。该方法避免了构建替代物,还原级模型的需求。〜所提出的实现包括三个步骤:(a)来自基于高维代理的模拟,机器学习(尤其是非线性歧管学习(扩散图)(扩散地图) (DMS))有助于确定一组粗粒变量,该变量参数化了出现/集体动力学的低维歧管。从高维输入空间到低维歧管和背部,通过将DMS与NyStrom扩展和几何谐波耦合来求解;(b)已确定了歧管及其坐标,我们将方程式的方法利用了方程的方法对出现动力学执行数值分叉分析;然后,基于先前的步骤(C),我们设计了数据驱动的嵌入式洗涤控制器,该控制器将基于代理的模拟器驱动其内在的IM精确知道的,新兴的开环不稳定稳态,因此表明该方案对数值近似误差和建模不确定性是可靠的。交通动态模型和(ii)与哑剧的随机金融市场代理模型的平衡。
translated by 谷歌翻译
动态模型是我们理解和预测自然系统行为的能力。无论是从第一原理推导还是从观察数据开发的动力模型,它们都基于我们选择状态变量。状态变量的选择是由便利性和直觉驱动的,在数据​​驱动的情况下,观察到的变量通常被选择为状态变量。这些变量的维度(以及动态模型)可以任意大,从而掩盖了系统的基本行为。实际上,这些变量通常是高度冗余的,并且该系统是由一组潜在的内在变量集驱动的。在这项研究中,我们将流形的数学理论与神经网络的代表能力相结合,以开发一种方法,该方法直接从时间序列数据中学习了系统的内在状态变量,还可以学习其动力学的预测模型。我们方法的区别在于,它有能力将数据减少到其居住的非线性流形的固有维度。从流形理论中的图表和地图集的概念可以实现这种能力,从而使歧管由缝制在一起的贴片的集合表示,这是获得内在维度的必要表示。我们在几个具有低维行为的高维系统上证明了这种方法。最终的框架提供了开发最低维度的动态模型的能力,从而捕获了系统的本质。
translated by 谷歌翻译
通过图形结构表示数据标识在多个数据分析应用中提取信息的最有效方法之一。当调查多模式数据集时,这尤其如此,因为通过各种传感策略收集的记录被考虑并探索。然而,经典曲线图信号处理基于根据热扩散机构配置的信息传播的模型。该系统提供了对多模式数据分析不适用于多模式数据分析的数据属性的若干约束和假设,特别是当考虑从异构源收集的大规模数据集,因此结果的准确性和稳健性可能会受到严重危害。在本文中,我们介绍了一种基于流体扩散的图表定义模型。该方法提高了基于图形的数据分析的能力,以考虑运行方案中现代数据分析的几个问题,从而为对考试记录的记录底层的现象提供了一种精确,多才多艺的,有效地理解平台,以及完全利用记录的多样性提供的潜力,以获得数据的彻底表征及其意义。在这项工作中,我们专注于使用这种流体扩散模型来驱动社区检测方案,即根据节点中的节点中的相似性将多模式数据集分为多个组中。在不同应用场景中测试真正的多模式数据集实现的实验结果表明,我们的方法能够强烈优先于多媒体数据分析中的社区检测的最先进方案。
translated by 谷歌翻译
在机器学习中调用多种假设需要了解歧管的几何形状和维度,理论决定了需要多少样本。但是,在应用程序数据中,采样可能不均匀,歧管属性是未知的,并且(可能)非纯化;这意味着社区必须适应本地结构。我们介绍了一种用于推断相似性内核提供数据的自适应邻域的算法。从本地保守的邻域(Gabriel)图开始,我们根据加权对应物进行迭代率稀疏。在每个步骤中,线性程序在全球范围内产生最小的社区,并且体积统计数据揭示了邻居离群值可能违反了歧管几何形状。我们将自适应邻域应用于非线性维度降低,地球计算和维度估计。与标准算法的比较,例如使用K-Nearest邻居,证明了它们的实用性。
translated by 谷歌翻译
本构模型广泛用于在科学与工程中建模复杂系统,其中基于第一原则,解决良好的模拟通常是非常昂贵的。例如,在流体动力学中,需要构成型型号来描述非局部,未解决的物理学,例如湍流和层状湍流转变。然而,基于部分微分方程(PDE)的传统本构模型通常缺乏稳健性,并且太硬而无法容纳不同的校准数据集。我们提出了一种基于可以使用数据学习的矢量云神经网络的帧无关的非局部构成模型。该模型在基于其邻域中的流量信息的点处预测闭合变量。这种非本种信息由一组点表示,每个点具有附加到它的特征向量,因此输入被称为矢量云。云通过帧无关的神经网络映射到封闭变量,不变于协调转换和旋转以及云中点的排序。这样,网络可以处理任何数量的任意排列的网格点,因此适用于流体模拟中的非结构化网格。所提出的网络的优点是在参数化的周期山几何形状上的标量传输PDE上进行了说明。矢量云神经网络是一个有前途的工具,不仅是非本体构成型模型,而且还是作为不规则结构域的PDE的一般代理模型。
translated by 谷歌翻译
在仅给定国家的数据随着时间的推移数据时,确定系统的基本动力学的问题已经挑战了科学家数十年来的挑战。在本文中,介绍了使用机器学习对相位空间变量的{\ em更新}进行建模的方法;这是作为相空间变量的函数完成的。 (更一般而言,建模是在变量的射流空间上进行的。)该方法被证明可以准确地复制谐波振荡器,摆和Duffing振荡器的示例的动力学;在每个示例中,还可以准确恢复基础微分方程。另外,结果绝不取决于如何随时间(即定期或不规则)对数据进行采样。证明这种方法(称为“ FJET”)类似于runge-kutta(RK)数值集成方案的泰勒级数扩展产生的模型。这个类比赋予了明确揭示在建模中使用的适当功能的优势,并揭示了更新的误差估计。因此,可以将这种新方法视为通过机器学习来确定RK方案系数的一种方式。最后,在未阻尼的谐波振荡器示例中显示,更新的稳定性稳定,$ 10^9美元的$ 10^9美元的稳定性比$ 4 $ ther-ther-ther-ther-tord RK稳定。
translated by 谷歌翻译
如果机器人曾经实现与动物所展示的机器人相当的自动运动,则它们必须获得在损害,故障或环境条件下快速恢复运动行为的能力,从而损害了其有效移动的能力。我们提出了一种方法,该方法使我们的机器人和模拟机器人能够在几十次尝试中恢复自由运动行为的高度。我们的方法采用行为规范,以等级的差异约束来表达所需的行为。我们展示了如何通过编码模板来考虑这些约束,从而产生了将先前优化的行为推广到新情况下以快速学习的形式概括的秘诀。我们进一步说明,在数据驱动的上下文中,足够的限制通常很容易确定。作为例证,我们证明了我们在物理7 DOF六型六杆元机器人上的恢复方法,以及对6 DOF 2D运动机制的模拟。在这两种情况下,我们恢复了与先前优化的运动在功能上无法区分的行为。
translated by 谷歌翻译
我们开发了包含几何信息和拓扑信息的数据驱动方法,以从观察值中学习非线性动力学的简约表示。我们开发了使用与变异自动编码器(VAE)相关的训练策略来学习一般歧管潜在空间动力学的非线性状态空间模型的方法。我们的方法称为几何动力学(GD)变化自动编码器(GD-VAE)。我们根据包括一般多层感知器(MLP),卷积神经网络(CNNS)和转置CNN(T-CNN)在内的深层神经网络体系结构学习系统状态和进化的编码器和分解器。由参数化的PDE和物理学引起的问题的促进,我们研究了我们在学习非线性汉堡方程,约束机械系统和反应扩散系统的空间场的低维表示任务方面的性能。 GD-VAE提供了用于获取表示涉及动态任务的表示形式的方法。
translated by 谷歌翻译
Koopman运算符是无限维的运算符,可全球线性化非线性动态系统,使其光谱信息可用于理解动态。然而,Koopman运算符可以具有连续的光谱和无限维度的子空间,使得它们的光谱信息提供相当大的挑战。本文介绍了具有严格融合的数据驱动算法,用于从轨迹数据计算Koopman运算符的频谱信息。我们引入了残余动态模式分解(ResDMD),它提供了第一种用于计算普通Koopman运算符的Spectra和PseudtoStra的第一种方案,无需光谱污染。使用解析器操作员和RESDMD,我们还计算与测量保存动态系统相关的光谱度量的平滑近似。我们证明了我们的算法的显式收敛定理,即使计算连续频谱和离散频谱的密度,也可以实现高阶收敛即使是混沌系统。我们展示了在帐篷地图,高斯迭代地图,非线性摆,双摆,洛伦茨系统和11美元延长洛伦兹系统的算法。最后,我们为具有高维状态空间的动态系统提供了我们的算法的核化变体。这使我们能够计算与具有20,046维状态空间的蛋白质分子的动态相关的光谱度量,并计算出湍流流过空气的误差界限的非线性Koopman模式,其具有雷诺数为$> 10 ^ 5 $。一个295,122维的状态空间。
translated by 谷歌翻译