In this paper, we present a new model for Direction of Arrival (DOA) estimation of sound sources based on an Icosahedral Convolutional Neural Network (CNN) applied over SRP-PHAT power maps computed from the signals received by a microphone array. This icosahedral CNN is equivariant to the 60 rotational symmetries of the icosahedron, which represent a good approximation of the continuous space of spherical rotations, and can be implemented using standard 2D convolutional layers, having a lower computational cost than most of the spherical CNNs. In addition, instead of using fully connected layers after the icosahedral convolutions, we propose a new soft-argmax function that can be seen as a differentiable version of the argmax function and allows us to solve the DOA estimation as a regression problem interpreting the output of the convolutional layers as a probability distribution. We prove that using models that fit the equivariances of the problem allows us to outperform other state-of-the-art models with a lower computational cost and more robustness, obtaining root mean square localization errors lower than 10{\deg} even in scenarios with a reverberation time $T_{60}$ of 1.5 s.
translated by 谷歌翻译
The principle of equivariance to symmetry transformations enables a theoretically grounded approach to neural network architecture design. Equivariant networks have shown excellent performance and data efficiency on vision and medical imaging problems that exhibit symmetries. Here we show how this principle can be extended beyond global symmetries to local gauge transformations. This enables the development of a very general class of convolutional neural networks on manifolds that depend only on the intrinsic geometry, and which includes many popular methods from equivariant and geometric deep learning.We implement gauge equivariant CNNs for signals defined on the surface of the icosahedron, which provides a reasonable approximation of the sphere. By choosing to work with this very regular manifold, we are able to implement the gauge equivariant convolution using a single conv2d call, making it a highly scalable and practical alternative to Spherical CNNs. Using this method, we demonstrate substantial improvements over previous methods on the task of segmenting omnidirectional images and global climate patterns.
translated by 谷歌翻译
使用麦克风阵列的扬声器定位取决于准确的时间延迟估计技术。几十年来,基于与相变的广义跨相关性(GCC-PHAT)的方法已被广泛用于此目的。最近,GCC-PHAT也已用于为神经网络提供输入特征,以消除噪声和混响的影响,但以无噪声条件下的理论保证为代价。我们提出了一种新的方法来扩展GCC-PHAT,其中使用移位模糊的神经网络过滤接收的信号,该神经网络保留信号中包含的时序信息。通过广泛的实验,我们表明我们的模型始终减少不利环境中GCC-PHAT的误差,并保证在理想条件下确切的时间延迟恢复。
translated by 谷歌翻译
最新的2D图像压缩方案依赖于卷积神经网络(CNN)的力量。尽管CNN为2D图像压缩提供了有希望的观点,但将此类模型扩展到全向图像并不简单。首先,全向图像具有特定的空间和统计特性,这些特性无法通过当前CNN模型完全捕获。其次,在球体上,基本的数学操作组成了CNN体系结构,例如翻译和采样。在本文中,我们研究了全向图像的表示模型的学习,并建议使用球体的HealPix均匀采样的属性来重新定义用于全向图像的深度学习模型中使用的数学工具。特别是,我们:i)提出了在球体上进行新的卷积操作的定义,以保持经典2D卷积的高表现力和低复杂性; ii)适应标准的CNN技术,例如步幅,迭代聚集和像素改组到球形结构域;然后iii)将我们的新框架应用于全向图像压缩的任务。我们的实验表明,与应用于等应角图像的类似学习模型相比,我们提出的球形溶液可带来更好的压缩增益,可以节省比特率的13.7%。同样,与基于图形卷积网络的学习模型相比,我们的解决方案支持更具表现力的过滤器,这些过滤器可以保留高频并提供压缩图像的更好的感知质量。这样的结果证明了拟议框架的效率,该框架为其他全向视觉任务任务打开了新的研究场所,以在球体歧管上有效实施。
translated by 谷歌翻译
卷积神经网络(CNNS)非常有效,因为它们利用自然图像的固有转换不变性。但是,翻译只是无数的有用空间转换之一。在考虑其他空间的侵犯侵犯性时可以获得相同的效率吗?过去已经考虑过这种广义综合,但以高计算成本为例。我们展示了一个简单和精确的建筑,但标准卷积具有相同的计算复杂性。它由一个恒定的图像扭曲,后跟一个简单的卷积,这是深度学习工具箱中的标准块。通过精心制作的经线,所产生的架构可以使成功的架构成为各种各样的双参数空间转换。我们展示了令人鼓舞的现实情景结果,包括谷歌地球数据集(旋转和缩放)中车辆姿势的估计,并且面部在野外注释的面部地标中的面部姿势(在透视下的3D旋转)。
translated by 谷歌翻译
我们介绍了CheBlieset,一种对(各向异性)歧管的组成的方法。对基于GRAP和基于组的神经网络的成功进行冲浪,我们利用了几何深度学习领域的最新发展,以推导出一种新的方法来利用数据中的任何各向异性。通过离散映射的谎言组,我们开发由各向异性卷积层(Chebyshev卷积),空间汇集和解凝层制成的图形神经网络,以及全球汇集层。集团的标准因素是通过具有各向异性左不变性的黎曼距离的图形上的等级和不变的运算符来实现的。由于其简单的形式,Riemannian公制可以在空间和方向域中模拟任何各向异性。这种对Riemannian度量的各向异性的控制允许平衡图形卷积层的不变性(各向异性度量)的平衡(各向异性指标)。因此,我们打开大门以更好地了解各向异性特性。此外,我们经验证明了在CIFAR10上的各向异性参数的存在(数据依赖性)甜点。这一关键的结果是通过利用数据中的各向异性属性来获得福利的证据。我们还评估了在STL10(图像数据)和ClimateNet(球面数据)上的这种方法的可扩展性,显示了对不同任务的显着适应性。
translated by 谷歌翻译
定义网格上卷积的常用方法是将它们作为图形解释并应用图形卷积网络(GCN)。这种GCNS利用各向同性核,因此对顶点的相对取向不敏感,从而对整个网格的几何形状。我们提出了规范的等分性网状CNN,它概括了GCNS施加各向异性仪表等级核。由于产生的特征携带方向信息,我们引入了通过网格边缘并行传输特征来定义的几何消息传递方案。我们的实验验证了常规GCN和其他方法的提出模型的显着提高的表达性。
translated by 谷歌翻译
基于2D图像的3D对象的推理由于从不同方向查看对象引起的外观差异很大,因此具有挑战性。理想情况下,我们的模型将是对物体姿势变化的不变或等效的。不幸的是,对于2D图像输入,这通常是不可能的,因为我们没有一个先验模型,即在平面外对象旋转下如何改变图像。唯一的$ \ mathrm {so}(3)$ - 当前存在的模型需要点云输入而不是2D图像。在本文中,我们提出了一种基于Icosahedral群卷积的新型模型体系结构,即通过将输入图像投影到iCosahedron上,以$ \ mathrm {so(3)} $中的理由。由于此投影,该模型大致与$ \ mathrm {so}(3)$中的旋转大致相当。我们将此模型应用于对象构成估计任务,并发现它的表现优于合理的基准。
translated by 谷歌翻译
低成本毫米波(MMWAVE)通信和雷达设备的商业可用性开始提高消费市场中这种技术的渗透,为第五代(5G)的大规模和致密的部署铺平了道路(5G) - 而且以及6G网络。同时,普遍存在MMWAVE访问将使设备定位和无设备的感测,以前所未有的精度,特别是对于Sub-6 GHz商业级设备。本文使用MMWAVE通信和雷达设备在基于设备的定位和无设备感应中进行了现有技术的调查,重点是室内部署。我们首先概述关于MMWAVE信号传播和系统设计的关键概念。然后,我们提供了MMWaves启用的本地化和感应方法和算法的详细说明。我们考虑了在我们的分析中的几个方面,包括每个工作的主要目标,技术和性能,每个研究是否达到了一定程度的实现,并且该硬件平台用于此目的。我们通过讨论消费者级设备的更好算法,密集部署的数据融合方法以及机器学习方法的受过教育应用是有前途,相关和及时的研究方向的结论。
translated by 谷歌翻译
在本文中,我们介绍了在单个神经网络中执行同时扬声器分离,DERE失眠和扬声器识别的盲言语分离和DERERATERATION(BSSD)网络。扬声器分离由一组预定义的空间线索引导。通过使用神经波束成形进行DERERATERATION,通过嵌入向量和三联挖掘来辅助扬声器识别。我们介绍了一种使用复值神经网络的频域模型,以及在潜伏空间中执行波束成形的时域变体。此外,我们提出了一个块在线模式来处理更长的录音,因为它们在会议场景中发生。我们在规模独立信号方面评估我们的系统,以失真率(SI-SI-SIS),字错误率(WER)和相等的错误率(eer)。
translated by 谷歌翻译
现有的球形卷积神经网络(CNN)框架在计算方面既可以扩展又是旋转等值的。连续的方法捕获旋转模棱两可,但通常在计算上是过时的。离散的方法提供了更有利的计算性能,但付出了损失。我们开发了一个混合离散(迪斯科)组卷积,该卷积同时均具有等效性,并且在计算上可扩展到高分辨率。虽然我们的框架可以应用于任何紧凑的组,但我们专注于球体。我们的迪斯科球形卷积不仅表现出$ \ text {so}(3)$ rotational equivariance,而且还表现出一种渐近$ \ text {so}(3)/\ text {so}(so}(so}(2)$ rotationation eporational ecorivarianciancience,对于许多应用程序(其中$ \ text {so}(n)$是特殊的正交组,代表$ n $ dimensions中的旋转)。通过稀疏的张量实现,我们可以在球体上的像素数量进行线性缩放,以供计算成本和内存使用情况。对于4K球形图像,与最有效的替代替代品量球卷积相比,我们意识到节省了$ 10^9 $的计算成本和$ 10^4 $的内存使用情况。我们将迪斯科球形CNN框架应用于球体上的许多基准密集预测问题,例如语义分割和深度估计,在所有这些问题上,我们都达到了最先进的性能。
translated by 谷歌翻译
使用多个麦克风进行语音增强的主要优点是,可以使用空间滤波来补充节奏光谱处理。在传统的环境中,通常单独执行线性空间滤波(波束形成)和单通道后过滤。相比之下,采用深层神经网络(DNN)有一种趋势来学习联合空间和速度 - 光谱非线性滤波器,这意味着对线性处理模型的限制以及空间和节奏单独处理的限制光谱信息可能可以克服。但是,尚不清楚导致此类数据驱动的过滤器以良好性能进行多通道语音增强的内部机制。因此,在这项工作中,我们通过仔细控制网络可用的信息源(空间,光谱和时间)来分析由DNN实现的非线性空间滤波器的性质及其与时间和光谱处理的相互依赖性。我们确认了非线性空间处理模型的优越性,该模型在挑战性的扬声器提取方案中优于Oracle线性空间滤波器,以低于0.24的POLQA得分,较少数量的麦克风。我们的分析表明,在特定的光谱信息中应与空间信息共同处理,因为这会提高过滤器的空间选择性。然后,我们的系统评估会导致一个简单的网络体系结构,该网络体系结构在扬声器提取任务上的最先进的网络体系结构优于0.22 POLQA得分,而CHIME3数据上的POLQA得分为0.32。
translated by 谷歌翻译
The International Workshop on Reading Music Systems (WoRMS) is a workshop that tries to connect researchers who develop systems for reading music, such as in the field of Optical Music Recognition, with other researchers and practitioners that could benefit from such systems, like librarians or musicologists. The relevant topics of interest for the workshop include, but are not limited to: Music reading systems; Optical music recognition; Datasets and performance evaluation; Image processing on music scores; Writer identification; Authoring, editing, storing and presentation systems for music scores; Multi-modal systems; Novel input-methods for music to produce written music; Web-based Music Information Retrieval services; Applications and projects; Use-cases related to written music. These are the proceedings of the 3rd International Workshop on Reading Music Systems, held in Alicante on the 23rd of July 2021.
translated by 谷歌翻译
在构建声学和现有房间的声学诊断的背景下,本文介绍了一种新方法,仅从房间脉冲响应(RIR)估计平均吸收系数。通过虚拟监督学习来解决该逆问题,即,使用人工神经网络对模拟数据集的回归隐式学习RIR-ob吸收映射。我们专注于基于良好的架构的简单模型。用于训练模型的几何,声学和仿真参数的关键选择是广泛讨论和研究的,同时在思想中,在思想中,旨在代表建筑物声学领域的条件。将学习的神经模型的估计误差与具有经典公式获得的那些,需要了解房间的几何形状和混响时间。在各种模拟测试集上进行了广泛的比较,突出了所学习模型可以克服这些公式下面弥漫声场假设的众所周知的众所周知的众所周知的不同条件。在声学可配置的房间测量的真实RIR上获得的结果表明,在1〜kHz及以上,当可以可靠地估计混响时间时,所提出的方法可相当于经典模型,即使在不能的情况下也继续工作。
translated by 谷歌翻译
我们分析了旋转模糊性在应​​用于球形图像的卷积神经网络(CNN)中的作用。我们比较了被称为S2CNN的组等效网络的性能和经过越来越多的数据增强量的标准非等级CNN。所选的体系结构可以视为相应设计范式的基线参考。我们的模型对投影到球体的MNIST或FashionMnist数据集进行了训练和评估。对于固有旋转不变的图像分类的任务,我们发现,通过大大增加数据增强量和网络的大小,标准CNN可以至少达到与Equivariant网络相同的性能。相比之下,对于固有的等效性语义分割任务,非等级网络的表现始终超过具有较少参数的模棱两可的网络。我们还分析和比较了不同网络的推理潜伏期和培训时间,从而实现了对等效架构和数据扩展之间的详细权衡考虑,以解决实际问题。实验中使用的均衡球网络可在https://github.com/janegerken/sem_seg_s2cnn上获得。
translated by 谷歌翻译
Steerable convolutional neural networks (CNNs) provide a general framework for building neural networks equivariant to translations and other transformations belonging to an origin-preserving group $G$, such as reflections and rotations. They rely on standard convolutions with $G$-steerable kernels obtained by analytically solving the group-specific equivariance constraint imposed onto the kernel space. As the solution is tailored to a particular group $G$, the implementation of a kernel basis does not generalize to other symmetry transformations, which complicates the development of group equivariant models. We propose using implicit neural representation via multi-layer perceptrons (MLPs) to parameterize $G$-steerable kernels. The resulting framework offers a simple and flexible way to implement Steerable CNNs and generalizes to any group $G$ for which a $G$-equivariant MLP can be built. We apply our method to point cloud (ModelNet-40) and molecular data (QM9) and demonstrate a significant improvement in performance compared to standard Steerable CNNs.
translated by 谷歌翻译
Translating or rotating an input image should not affect the results of many computer vision tasks. Convolutional neural networks (CNNs) are already translation equivariant: input image translations produce proportionate feature map translations. This is not the case for rotations. Global rotation equivariance is typically sought through data augmentation, but patch-wise equivariance is more difficult. We present Harmonic Networks or H-Nets, a CNN exhibiting equivariance to patch-wise translation and 360-rotation. We achieve this by replacing regular CNN filters with circular harmonics, returning a maximal response and orientation for every receptive field patch.H-Nets use a rich, parameter-efficient and fixed computational complexity representation, and we show that deep feature maps within the network encode complicated rotational invariants. We demonstrate that our layers are general enough to be used in conjunction with the latest architectures and techniques, such as deep supervision and batch normalization. We also achieve state-of-the-art classification on rotated-MNIST, and competitive results on other benchmark challenges.
translated by 谷歌翻译
在过去的二十年中,癫痫发作检测和预测算法迅速发展。然而,尽管性能得到了重大改进,但它们使用常规技术(例如互补的金属氧化物 - 轴导剂(CMO))进行的硬件实施,在权力和面积受限的设置中仍然是一项艰巨的任务;特别是当使用许多录音频道时。在本文中,我们提出了一种新型的低延迟平行卷积神经网络(CNN)体系结构,与SOTA CNN体系结构相比,网络参数少2-2,800倍,并且达到5倍的交叉验证精度为99.84%,用于癫痫发作检测,检测到99.84%。癫痫发作预测的99.01%和97.54%分别使用波恩大学脑电图(EEG),CHB-MIT和SWEC-ETHZ癫痫发作数据集进行评估。随后,我们将网络实施到包含电阻随机存储器(RRAM)设备的模拟横梁阵列上,并通过模拟,布置和确定系统中CNN组件的硬件要求来提供全面的基准。据我们所知,我们是第一个平行于在单独的模拟横杆上执行卷积层内核的人,与SOTA混合Memristive-CMOS DL加速器相比,潜伏期降低了2个数量级。此外,我们研究了非理想性对系统的影响,并研究了量化意识培训(QAT),以减轻由于ADC/DAC分辨率较低而导致的性能降解。最后,我们提出了一种卡住的重量抵消方法,以减轻因卡住的Ron/Roff Memristor重量而导致的性能降解,而无需再进行重新培训而恢复了高达32%的精度。我们平台的CNN组件估计在22nm FDSOI CMOS流程中占据31.255mm $^2 $的面积约为2.791W。
translated by 谷歌翻译
建模原子系统的能量和力是计算化学中的一个基本问题,有可能帮助解决世界上许多最紧迫的问题,包括与能源稀缺和气候变化有关的问题。这些计算传统上是使用密度函数理论进行的,这在计算上非常昂贵。机器学习有可能从天数或小时到秒从天数大幅提高这些计算的效率。我们建议球形通道网络(SCN)对原子能量和力进行建模。 SCN是一个图神经网络,节点代表原子并边缘其相邻原子。原子嵌入是使用球形谐波表示的一组球形函数,称为球形通道。我们证明,通过基于3D边缘方向旋转嵌入式,可以在保持消息的旋转模糊性的同时使用更多信息。虽然均衡性是理想的属性,但我们发现,通过在消息传递和聚合中放松这种约束,可以提高准确性。我们在大规模开放催化剂2020数据集中展示了最新的结果,这些数据集在能源和力量预测中,用于许多任务和指标。
translated by 谷歌翻译
基于RF信号的方向查找和定位系统因多径传播而受到显着影响,特别是在室内环境中。现有算法(例如音乐)在多径存在的情况下解决到达角度(AOA)或在弱信号方案中操作时表现不佳。我们注意到数字采样的RF前端允许轻松分析信号和延迟组件。低成本软件定义的无线电(SDR)模块使能跨宽频谱的通道状态信息(CSI)提取,激励增强的到达角度(AOA)解决方案的设计。我们提出了一种深入的学习方法,可以从SDR多通道数据的单一快照派生AOA。我们比较和对比基于深度学习的角度分类和回归模型,准确地估计最多两个AOA。我们已经在不同平台上实施了推理引擎,实时提取了AOA,展示了我们方法的计算途径。为了证明我们的方法的效用,我们在各种视角(LOS)和非线视线中收集了来自四元通用线性阵列(ULA)的IQ(同步和正交组件)样本( NLOS)环境,并发布了数据集。我们所提出的方法在确定撞击信号的数量并实现平均值为2 ^ {\ rIC} $ 2 ^ {\ cird} $时,我们提出的方法展示了出色的可靠性。
translated by 谷歌翻译