微弱的物理是计算机视觉和机器人的强大工具,用于了解互动的场景理解和推理。现有方法经常被限于具有预先已知的简单形状或形状的物体。在本文中,我们提出了一种新的方法来具有摩擦触点的可分解物理学,其利用符号距离场(SDF)隐含地表示物理形状。我们的模拟即使涉及的形状为非凸形表示,也支持接触点计算。此外,我们提出了区分对象形状的动力学来利用基于梯度的方法来促进形状优化。在我们的实验中,我们证明我们的方法允许从轨迹和深度图像观察的诸如摩擦系数,质量,力或形状参数的物理参数的基于模型的推断,并且在几个具有挑战性的合成场景和真实图像序列中。
translated by 谷歌翻译
We present a differentiable formulation of rigid-body contact dynamics for objects and robots represented as compositions of convex primitives. Existing optimization-based approaches simulating contact between convex primitives rely on a bilevel formulation that separates collision detection and contact simulation. These approaches are unreliable in realistic contact simulation scenarios because isolating the collision detection problem introduces contact location non-uniqueness. Our approach combines contact simulation and collision detection into a unified single-level optimization problem. This disambiguates the collision detection problem in a physics-informed manner. Compared to previous differentiable simulation approaches, our formulation features improved simulation robustness and a reduction in computational complexity by more than an order of magnitude. We illustrate the contact and collision differentiability on a robotic manipulation task requiring optimization-through-contact. We provide a numerically efficient implementation of our formulation in the Julia language called Silico.jl.
translated by 谷歌翻译
手动相互作用的研究需要为高维多手指模型产生可行的掌握姿势,这通常依赖于分析抓取的合成,从而产生脆弱且不自然的结果。本文介绍了Grasp'd,这是一种与已知模型和视觉输入的可区分接触模拟的掌握方法。我们使用基于梯度的方法作为基于采样的GRASP合成的替代方法,该方法在没有简化假设的情况下失败,例如预先指定的接触位置和本本特征。这样的假设限制了掌握发现,尤其是排除了高接触功率掌握。相比之下,我们基于模拟的方法允许即使对于具有高度自由度的抓地力形态,也可以稳定,高效,物理逼真,高接触抓紧合成。我们确定并解决了对基于梯度的优化进行掌握模拟的挑战,例如非平滑对象表面几何形状,接触稀疏性和坚固的优化景观。 GRASP-D与人类和机器人手模型的分析掌握合成相比,并且结果抓紧超过4倍,超过4倍,从而导致较高的GRASP稳定性。视频和代码可在https://graspd-eccv22.github.io/上获得。
translated by 谷歌翻译
在本文中,我们介绍一种方法来自动重建与来自单个RGB视频相互作用的人的3D运动。我们的方法估计人的3D与物体姿势,接触位置和施加在人体上的接触力的姿势。这项工作的主要贡献是三倍。首先,我们介绍一种通过建模触点和相互作用的动态来联合估计人与人的运动和致动力的方法。这是一个大规模的轨迹优化问题。其次,我们开发一种方法来从输入视频自动识别,从输入视频中识别人和物体或地面之间的2D位置和时序,从而显着简化了优化的复杂性。第三,我们在最近的视频+ Mocap数据集上验证了捕获典型的Parkour行动的方法,并在互联网视频的新数据集上展示其表现,显示人们在不受约束的环境中操纵各种工具。
translated by 谷歌翻译
合并适当的归纳偏差在从数据的学习动态中发挥着关键作用。通过将拉格朗日或哈密顿的动态编码到神经网络架构中,越来越多的工作已经探索了在学习动态中实施节能的方法。这些现有方法基于微分方程,其不允许州中的不连续性,从而限制了一个人可以学习的系统。然而,实际上,大多数物理系统,例如腿机器人和机器人操纵器,涉及联系和碰撞,这在各州引入了不连续性。在本文中,我们介绍了一种可微分的接触型号,可以捕获接触机械:无摩擦/摩擦,以及弹性/无弹性。该模型还可以适应不等式约束,例如关节角度的限制。拟议的联系模式通过允许同时学习联系和系统性质来扩展拉格朗日和哈密顿神经网络的范围。我们在具有不同恢复系数和摩擦系数的一系列具有挑战性的2D和3D物理系统上展示了这一框架。学习的动态可以用作用于下游梯度的优化任务的可分解物理模拟器,例如规划和控制。
translated by 谷歌翻译
布模拟在计算机动画,服装设计和机器人辅助敷料中具有广泛的应用。这项工作提出了一个可区分的布模拟器,其附加梯度信息促进了与布相关的应用。我们可区分的模拟器扩展了基于投影动力学(PD)和干摩擦接触的最先进的布模拟器。我们从以前的工作中汲取灵感,提出了一种快速新颖的方法,用于通过干摩擦接触在基于PD的布模拟中得出梯度。此外,我们对富含接触的布模拟中梯度的实用性进行了全面的分析和评估。最后,我们证明了模拟器在许多下游应用中的功效,包括系统识别,辅助调味料的轨迹优化,闭环控制,逆设计和实际降低SIM转移。我们观察到通过使用我们的梯度信息来求解大多数这些应用程序获得的大幅加速。
translated by 谷歌翻译
准确地对现实世界进行建模接触行为,对于现有的刚体物理模拟器而言,近刚毛的材料仍然是一个巨大的挑战。本文介绍了一个数据增强的接触模型,该模型将分析解决方案与观察到的数据结合在一起,以预测3D接触脉冲,这可能会导致刚体在各个方向上弹跳,滑动或旋转。我们的方法通过从观察到的数据中学习接触行为来增强标准库仑接触模型的表现力,同时尽可能保留基本的接触约束。例如,对分类器进行了训练,以近似静态摩擦和动态摩擦之间的过渡,而在碰撞过程中的非渗透约束在分析中执行。我们的方法计算整个刚体的触点的汇总效果,而不是分别预测每个接触点的接触力,而保持相同的模拟速度,而与接触点的数量增加了详细的几何形状。补充视频:https://shorturl.at/eilwx关键字:物理模拟算法,动态学习,联系人学习
translated by 谷歌翻译
在这项工作中,我们解决了共同跟踪手对象姿势并从野外深度点云序列重建形状的具有挑战性,HandTrackNet,以估计框架间的手动运动。我们的HandTrackNet提出了一个新型的手姿势构成典型化模块,以简化跟踪任务,从而产生准确且稳健的手工关节跟踪。然后,我们的管道通过将预测的手关节转换为基于模板的参数手模型mano来重建全手。对于对象跟踪,我们设计了一个简单而有效的模块,该模块从第一帧估算对象SDF并执行基于优化的跟踪。最后,采用联合优化步骤执行联合手和物体推理,从而减轻了闭塞引起的歧义并进一步完善了手姿势。在训练过程中,整个管道仅看到纯粹的合成数据,这些数据与足够的变化并通过深度模拟合成,以易于概括。整个管道与概括差距有关,因此可以直接传输到真实的野外数据。我们在两个真实的手对象交互数据集上评估我们的方法,例如HO3D和DEXYCB,没有任何填充。我们的实验表明,所提出的方法显着优于先前基于深度的手和对象姿势估计和跟踪方法,以9 fps的帧速率运行。
translated by 谷歌翻译
在粗糙的地形上的动态运动需要准确的脚部放置,避免碰撞以及系统的动态不足的计划。在存在不完美且常常不完整的感知信息的情况下,可靠地优化此类动作和互动是具有挑战性的。我们提出了一个完整的感知,计划和控制管道,可以实时优化机器人所有自由度的动作。为了减轻地形所带来的数值挑战,凸出不平等约束的顺序被提取为立足性可行性的局部近似值,并嵌入到在线模型预测控制器中。每个高程映射预先计算了步骤性分类,平面分割和签名的距离场,以最大程度地减少优化过程中的计算工作。多次射击,实时迭代和基于滤波器的线路搜索的组合用于可靠地以高速率解决该法式问题。我们在模拟中的间隙,斜率和踏上石头的情况下验证了所提出的方法,并在Anymal四倍的平台上进行实验,从而实现了最新的动态攀登。
translated by 谷歌翻译
我们旨在教机器人通过观看单个视频演示来执行简单的对象操纵任务。为了实现这一目标,我们提出了一种优化方法,该方法输出了一个粗糙且在时间上不断发展的3D场景,以模仿输入视频中所示的动作。与以前的工作相似,可区分的渲染器可确保3D场景和2D视频之间的感知忠诚度。我们的关键新颖性在于包含一种可区分方法来求解一组普通微分方程(ODE),该方程使我们能够近似建模物理定律,例如重力,摩擦,手动对象或对象对象相互作用。这不仅使我们能够显着提高估计的手和物体状态的质量,而且还可以产生可接受的轨迹,这些轨迹可以直接转化为机器人,而无需进行昂贵的强化学习。我们在3D重建任务上评估了我们的方法,该任务由54个视频演示组成,这些视频演示来自9个动作,例如将某物从右到左拉或将某物放在某物前。我们的方法将以前的最先进的方法提高了近30%,在涉及两个物体(例如将某物)的物理互动的特别挑战性的动作上表现出了卓越的质量。最后,我们在Franka Emika Panda机器人上展示了博学的技能。
translated by 谷歌翻译
4D隐式表示中的最新进展集中在全球控制形状和运动的情况下,低维潜在向量,这很容易缺少表面细节和累积跟踪误差。尽管许多深层的本地表示显示了3D形状建模的有希望的结果,但它们的4D对应物尚不存在。在本文中,我们通过提出一个新颖的局部4D隐性代表来填补这一空白,以动态穿衣人,名为Lord,具有4D人类建模和局部代表的优点,并实现具有详细的表面变形的高保真重建,例如衣服皱纹。特别是,我们的主要见解是鼓励网络学习本地零件级表示的潜在代码,能够解释本地几何形状和时间变形。为了在测试时间进行推断,我们首先估计内部骨架运动在每个时间步中跟踪本地零件,然后根据不同类型的观察到的数据通过自动编码来优化每个部分的潜在代码。广泛的实验表明,该提出的方法具有强大的代表4D人类的能力,并且在实际应用上胜过最先进的方法,包括从稀疏点,非刚性深度融合(质量和定量)进行的4D重建。
translated by 谷歌翻译
我们提出了Dojo,这是一种用于机器人技术的可区分物理引擎,优先考虑稳定的模拟,准确的接触物理学以及相对于状态,动作和系统参数的可不同性。Dojo在低样本速率下实现稳定的模拟,并通过使用变异积分器来节省能量和动量。非线性互补性问题,具有用于摩擦的二阶锥体,模型硬接触,并使用自定义的Primal Dual内部点法可靠地解决。使用隐式功能定理利用内点方法的特殊属性,以有效计算通过接触事件提供有用信息的光滑梯度。我们展示了Dojo独特的模拟紧密接触能力,同时提供了许多示例,包括轨迹优化,强化学习和系统识别。
translated by 谷歌翻译
Figure 1: DeepSDF represents signed distance functions (SDFs) of shapes via latent code-conditioned feed-forward decoder networks. Above images are raycast renderings of DeepSDF interpolating between two shapes in the learned shape latent space. Best viewed digitally.
translated by 谷歌翻译
虽然牛顿力学的基本规律得到了很好的理解,但是解释了物理场景仍然需要用合适的方程式制造问题并估计相关参数。为了能够利用人工智能技术在这种物理相关的背景下利用近似能力,研究人员已经手工制作了相关状态,然后使用神经网络来学习使用模拟运行作为训练数据的状态转换。遗憾的是,这种方法不适合建模复杂的现实情景,在手动创作相关的状态空间往往是乏味和挑战性的。在这项工作中,我们研究了神经网络是否可以基于视觉数据隐含地学习现实世界机械过程的物理状态,而在内部建模非均匀环境中,并且在该过程中可以实现长期物理推断。我们为此任务开发了经常性的神经网络架构,并且还以不断变化的方差估计的形式表征了结果的不确定性。我们评估我们的设置,以推断在不同形状和方向的碗上的滚珠球运动,以及仅使用图像作为输入的任意高度场。我们在对预测的准确性和情景复杂性方面,我们报告了对现有的基于图像的方法的显着改进;并报告与我们不同的方法,竞争性能与我们不同,承担进入内部物理状态。
translated by 谷歌翻译
将3D坐标映射到签名距离函数(SDF)或占用值的神经网络具有启用对象形状的高保真隐式表示。本文开发了一种新的形状模型,允许通过优化连续符号定向距离功能(SDDF)来合成新颖距离视图。与Deep SDF模型类似,我们的SDDF配方可以代表整个类别的形状并从部分输入数据中跨越形状填写或插入。与SDF不同,该SDF在任何方向上测量到最近表面的距离,SDDF测量给定方向的距离。这允许训练没有3D形状监控的SDDF模型,仅使用距离测量,从深度相机或激光雷达传感器易获得。我们的模型还通过直接在任意位置和观察方向上直接预测距离,去除像表面提取或渲染的后处理步骤。与深色视角综合技术不同,例如培训高容量黑盒型号的神经辐射字段,我们的模型通过构造SDDF值沿着观察方向线性降低的性质。这种结构约束不仅导致维度降低,而且还提供了关于SDDF预测的准确性的分析信心,无论到物体表面的距离如何。
translated by 谷歌翻译
We propose a differentiable sphere tracing algorithm to bridge the gap between inverse graphics methods and the recently proposed deep learning based implicit signed distance function. Due to the nature of the implicit function, the rendering process requires tremendous function queries, which is particularly problematic when the function is represented as a neural network. We optimize both the forward and backward passes of our rendering layer to make it run efficiently with affordable memory consumption on a commodity graphics card. Our rendering method is fully differentiable such that losses can be directly computed on the rendered 2D observations, and the gradients can be propagated backwards to optimize the 3D geometry. We show that our rendering method can effectively reconstruct accurate 3D shapes from various inputs, such as sparse depth and multi-view images, through inverse optimization. With the geometry based reasoning, our 3D shape prediction methods show excellent generalization capability and robustness against various noises. * Work done while Shaohui Liu was an academic guest at ETH Zurich.
translated by 谷歌翻译
通常,非刚性登记的问题是匹配在两个不同点拍摄的动态对象的两个不同扫描。这些扫描可以进行刚性动作和非刚性变形。由于模型的新部分可能进入视图,而其他部件在两个扫描之间堵塞,则重叠区域是两个扫描的子集。在最常规的设置中,没有给出先前的模板形状,并且没有可用的标记或显式特征点对应关系。因此,这种情况是局部匹配问题,其考虑了随后的扫描在具有大量重叠区域的情况下进行的扫描经历的假设[28]。本文在环境中寻址的问题是同时在环境中映射变形对象和本地化摄像机。
translated by 谷歌翻译
最近的工作建模3D开放表面培训深度神经网络以近似无符号距离字段(UDF)并隐含地代表形状。要将此表示转换为显式网格,它们要么使用计算上昂贵的方法来对表面的致密点云采样啮合,或者通过将其膨胀到符号距离字段(SDF)中来扭曲表面。相比之下,我们建议直接将深度UDFS直接以延伸行进立方体的开放表面,通过本地检测表面交叉。我们的方法是幅度的序列,比啮合致密点云,比膨胀开口表面更准确。此外,我们使我们的表面提取可微分,并显示它可以帮助稀疏监控信号。
translated by 谷歌翻译
可区分的仿真是用于基于快速梯度的策略优化和系统识别的有前途的工具包。但是,现有的可区分仿真方法在很大程度上已经解决了获得平滑梯度相对容易的方案,例如具有光滑动力学的系统。在这项工作中,我们研究了可区分的模拟所面临的挑战,当时单个下降不可行,这通常是全球最佳的,这通常是接触率丰富的方案中的问题。我们分析包含刚体和可变形物体的各种情况的优化景观。在具有高度可变形的物体和流体的动态环境中,可区分的模拟器在空间的某些地方生产具有有用梯度的坚固景观。我们提出了一种将贝叶斯优化与半本地“飞跃”相结合的方法,以获得可以有效使用梯度的全局搜索方法,同时还可以在具有嘈杂梯度的地区保持稳健的性能。我们表明,我们的方法在模拟中的一组实验集上优于几个基于梯度和无梯度的基线,并且还使用具有真实机器人和变形物的实验验证该方法。视频和补充材料可从https://tinyurl.com/globdiff获得
translated by 谷歌翻译
机器人操纵计划是找到一系列机器人配置的问题,该配置涉及与场景中的对象的交互,例如掌握,放置,工具使用等来实现这种相互作用,传统方法需要手工设计的特征和对象表示,它仍然是如何以灵活有效的方式描述与任意对象的这种交互的开放问题。例如,通过3D建模的最新进步启发,例如,NERF,我们提出了一种方法来表示对象作为神经隐式功能,我们可以在其中定义和共同列车交互约束函数。所提出的像素对准表示直接从具有已知相机几何形状的相机图像推断出,当时在整个操纵管道中作为感知组件,同时能够实现连续的机器人操纵计划。
translated by 谷歌翻译