Diffusion probabilistic models have been recently used in a variety of tasks, including speech enhancement and synthesis. As a generative approach, diffusion models have been shown to be especially suitable for imputation problems, where missing data is generated based on existing data. Phase retrieval is inherently an imputation problem, where phase information has to be generated based on the given magnitude. In this work we build upon previous work in the speech domain, adapting a speech enhancement diffusion model specifically for STFT phase retrieval. Evaluation using speech quality and intelligibility metrics shows the diffusion approach is well-suited to the phase retrieval task, with performance surpassing both classical and modern methods.
translated by 谷歌翻译
Diffusion-based generative models have had a high impact on the computer vision and speech processing communities these past years. Besides data generation tasks, they have also been employed for data restoration tasks like speech enhancement and dereverberation. While discriminative models have traditionally been argued to be more powerful e.g. for speech enhancement, generative diffusion approaches have recently been shown to narrow this performance gap considerably. In this paper, we systematically compare the performance of generative diffusion models and discriminative approaches on different speech restoration tasks. For this, we extend our prior contributions on diffusion-based speech enhancement in the complex time-frequency domain to the task of bandwith extension. We then compare it to a discriminatively trained neural network with the same network architecture on three restoration tasks, namely speech denoising, dereverberation and bandwidth extension. We observe that the generative approach performs globally better than its discriminative counterpart on all tasks, with the strongest benefit for non-additive distortion models, like in dereverberation and bandwidth extension. Code and audio examples can be found online at https://uhh.de/inf-sp-sgmsemultitask
translated by 谷歌翻译
基于分数的生成模型(SGM)最近显示了难以生成的任务的令人印象深刻的结果,例如自然图像和音频信号的无条件生成和条件生成。在这项工作中,我们将这些模型扩展到复杂的短时傅立叶变换(STFT)域,并提出了使用复杂值的深神经网络来增强语音的新型训练任务。我们在随机微分方程(SDE)的形式主义中得出了这项训练任务,从而实现了预测器 - 矫正器采样器的使用。我们提供了以前出版物启发的替代配方,以使用生成扩散模型来增强语音,从而避免了对噪声分布的任何先前假设的需求,并使训练任务纯粹是生成纯生成的,这是我们所显示的,从而改善了增强性能。
translated by 谷歌翻译
最近,基于扩散的生成模型已引入语音增强的任务。干净的语音损坏被建模为固定的远期过程,其中逐渐添加了越来越多的噪声。通过学习以嘈杂的输入为条件的迭代方式扭转这一过程,可以产生干净的语音。我们以先前的工作为基础,并在随机微分方程的形式主义中得出训练任务。我们对基础分数匹配目标进行了详细的理论综述,并探索了不同的采样器配置,以解决测试时的反向过程。通过使用自然图像生成文献的复杂网络体系结构,与以前的出版物相比,我们可以显着提高性能。我们还表明,我们可以与最近的判别模型竞争,并在评估与培训不同的语料库时获得更好的概括。我们通过主观的听力测试对评估结果进行补充,其中我们提出的方法是最好的。此外,我们表明所提出的方法在单渠道语音覆盖中实现了出色的最新性能。我们的代码和音频示例可在线获得,请参见https://uhh.de/inf-sp-sgmse
translated by 谷歌翻译
Diffusion models have shown a great ability at bridging the performance gap between predictive and generative approaches for speech enhancement. We have shown that they may even outperform their predictive counterparts for non-additive corruption types or when they are evaluated on mismatched conditions. However, diffusion models suffer from a high computational burden, mainly as they require to run a neural network for each reverse diffusion step, whereas predictive approaches only require one pass. As diffusion models are generative approaches they may also produce vocalizing and breathing artifacts in adverse conditions. In comparison, in such difficult scenarios, predictive models typically do not produce such artifacts but tend to distort the target speech instead, thereby degrading the speech quality. In this work, we present a stochastic regeneration approach where an estimate given by a predictive model is provided as a guide for further diffusion. We show that the proposed approach uses the predictive model to remove the vocalizing and breathing artifacts while producing very high quality samples thanks to the diffusion model, even in adverse conditions. We further show that this approach enables to use lighter sampling schemes with fewer diffusion steps without sacrificing quality, thus lifting the computational burden by an order of magnitude. Source code and audio examples are available online (https://uhh.de/inf-sp-storm).
translated by 谷歌翻译
由于其高质量的重建以及将现有迭代求解器结合起来的易于性,因此最近将扩散模型作为强大的生成反问题解决器研究。但是,大多数工作都专注于在无噪声设置中解决简单的线性逆问题,这显着不足以使实际问题的复杂性不足。在这项工作中,我们将扩散求解器扩展求解器,以通过后采样的拉普拉斯近似有效地处理一般噪声(非)线性反问题。有趣的是,所得的后验采样方案是扩散采样的混合版本,具有歧管约束梯度,而没有严格的测量一致性投影步骤,与先前的研究相比,在嘈杂的设置中产生了更可取的生成路径。我们的方法表明,扩散模型可以结合各种测量噪声统计量,例如高斯和泊松,并且还有效处理嘈杂的非线性反问题,例如傅立叶相检索和不均匀的脱毛。
translated by 谷歌翻译
语音转换是一项常见的语音综合任务,可以根据特定的现实情况来以不同的方式解决。最具挑战性的人通常被称为单一镜头多次的语音转换是在最一般的情况下,从一个参考语音中复制目标语音,而源和目标扬声器都不属于培训数据集。我们提出了一种基于扩散概率建模的可扩展高质量解决方案,与最新的单发语音转换方法相比,它表现出了优质的质量。此外,我们专注于实时应用程序,我们研究了可以更快地使扩散模型的一般原则,同时将合成质量保持在高水平。结果,我们开发了一种新型的随机微分方程求解器,适用于各种扩散模型类型和生成任务,如经验研究所示,并通过理论分析证明了它。
translated by 谷歌翻译
DeNoising扩散模型代表了计算机视觉中最新的主题,在生成建模领域表现出了显着的结果。扩散模型是一个基于两个阶段的深层生成模型,一个正向扩散阶段和反向扩散阶段。在正向扩散阶段,通过添加高斯噪声,输入数据在几个步骤中逐渐受到干扰。在反向阶段,模型的任务是通过学习逐步逆转扩散过程来恢复原始输入数据。尽管已知的计算负担,即由于采样过程中涉及的步骤数量,扩散模型对生成样品的质量和多样性得到了广泛赞赏。在这项调查中,我们对视觉中应用的denoising扩散模型的文章进行了全面综述,包括该领域的理论和实际贡献。首先,我们识别并介绍了三个通用扩散建模框架,这些框架基于扩散概率模型,噪声调节得分网络和随机微分方程。我们进一步讨论了扩散模型与其他深层生成模型之间的关系,包括变异自动编码器,生成对抗网络,基于能量的模型,自回归模型和正常流量。然后,我们介绍了计算机视觉中应用的扩散模型的多角度分类。最后,我们说明了扩散模型的当前局限性,并设想了一些有趣的未来研究方向。
translated by 谷歌翻译
我们定义了更广泛的腐败过程,该过程概括了先前已知的扩散模型。为了扭转这些一般的扩散,我们提出了一个称为“软得分匹配”的新目标,可以证明可以学习任何线性腐败过程的得分功能,并为Celeba提供最先进的结果。软得分匹配结合了网络中的降解过程,并训练模型以预测腐败与扩散观察相匹配的干净图像。我们表明,我们的目标在适当的规律性条件下为腐败过程的家庭学习了可能性的梯度。我们进一步开发了一种原则性的方法,以选择一般扩散过程的损坏水平和一种我们称为动量采样器的新型抽样方法。我们评估了我们的框架,腐败是高斯模糊和低幅度添加噪声。我们的方法在Celeba-64上获得了最先进的FID得分$ 1.85 $,表现优于所有以前的线性扩散模型。与香草deno的扩散相比,我们还显示出显着的计算益处。
translated by 谷歌翻译
深度学习表现出巨大的生成任务潜力。生成模型是可以根据某些隐含参数随机生成观测值的模型类。最近,扩散模型由于其发电能力而成为一类生成模型。如今,已经取得了巨大的成就。除了计算机视觉,语音产生,生物信息学和自然语言处理外,还需要在该领域探索更多应用。但是,扩散模型具有缓慢生成过程的自然缺点,从而导致许多增强的作品。该调查总结了扩散模型的领域。我们首先说明了两项具有里程碑意义的作品的主要问题-DDPM和DSM。然后,我们提供各种高级技术,以加快扩散模型 - 训练时间表,无训练采样,混合模型以及得分和扩散统一。关于现有模型,我们还根据特定的NFE提供了FID得分的基准和NLL。此外,引入了带有扩散模型的应用程序,包括计算机视觉,序列建模,音频和科学AI。最后,该领域以及局限性和进一步的方向都进行了摘要。
translated by 谷歌翻译
使用Denoisis扩散概率模型(DDPM)的神经声码器已通过适应给定的声学特征的扩散噪声分布来改善。在这项研究中,我们提出了适应扩散噪声的素描,以使其随时间变化的光谱包络变得接近条件对数 - 摩尔光谱图。随着时变的过滤这种适应可改善声音质量,尤其是在高频带中。它是在时频域中处理的,以使计算成本几乎与常规DDPM基于DDPM的神经声码器相同。实验结果表明,在分析合成和语音增强方案中,Specgrad比常规DDPM的神经声码器产生比常规DDPM的更高的语音波形。音频演示可在wavegrad.github.io/specgrad/上获得。
translated by 谷歌翻译
扩散概率模型已经证明了通过配对的扩散和反向过程模拟自然图像和原始音频波形的出色能力。可以利用反向过程的唯一特性(即,从高斯噪声和噪声信号中消除非目标信号)来恢复清洁信号。基于此属性,我们提出了一种基于扩散的基于概率模型的语言增强(漫反射)模型,其旨在从嘈杂的信号中恢复清洁语音信号。所提出的漫射模型的基本架构类似于差异 - 一种具有相对低的计算成本和足迹的高质量音频波形生成模型。为了获得更好的增强性能,我们设计了先进的反向过程,称为支持性反向过程,在每个时间步骤到预测的语音,这会增加噪音。实验结果表明,漫反射率与标准化语音银行语料库SE任务上的相关音频生成模型相当的性能。此外,相对于普遍建议的完整采样时间表,所提出的支持逆过程特别改善了快速采样,采取了几个步骤,从而产生更好的增强,从而通过传统的完整步长推断过程。
translated by 谷歌翻译
降级扩散概率模型(DDPM)最近在许多生成任务中都取得了领先的性能。但是,继承的迭代采样过程成本阻碍了他们的应用程序到文本到语音部署。通过有关扩散模型参数化的初步研究,我们发现以前基于梯度的TTS模型需要数百或数千个迭代以保证高样本质量,这对加速采样带来了挑战。在这项工作中,我们提出了Prodiff的建议,以用于高质量文本到语音的渐进快速扩散模型。与以前的估计数据密度梯度的工作不同,Prodiff通过直接预测清洁数据来避免在加速采样时避免明显的质量降解来参数化denoising模型。为了通过减少扩散迭代来应对模型收敛挑战,Prodiff通过知识蒸馏减少目标位点的数据差异。具体而言,Denoising模型使用N-Step DDIM教师的生成的MEL光谱图作为训练目标,并将行为提炼成具有N/2步的新模型。因此,它允许TTS模型做出尖锐的预测,并通过数量级进一步减少采样时间。我们的评估表明,Prodiff仅需要两次迭代即可合成高保真性MEL光谱图,同时使用数百个步骤保持样本质量和多样性与最先进的模型竞争。 Prodiff在单个NVIDIA 2080TI GPU上的采样速度比实时快24倍,这使得扩散模型实际上是第一次适用于文本到语音综合部署。我们广泛的消融研究表明,Prodiff中的每种设计都是有效的,我们进一步表明,Prodiff可以轻松扩展到多扬声器设置。音频样本可在\ url {https://prodiff.github.io/。}上找到
translated by 谷歌翻译
由于其作为生成模型的强大表现,最近达到了社区内部的显着兴趣。此外,其对逆问题的应用已经证明了最先进的性能。不幸的是,扩散模型具有临界缺点 - 它们本质上是速度的速度,从而需要几千台迭代来产生来自纯高斯噪声的图像。在这项工作中,我们表明从高斯噪音开始是不必要的。相反,从具有更好初始化的单个向前扩散开始显着降低了反向条件扩散中的采样步骤的数量。这种现象是通过我们的条件扩散策略的随机差分方程的收缩理论正式解释 - 反向扩散的交替应用,然后是非膨胀性数据一致性步骤。新的采样策略被称为较近的漫射 - 更快(CCDF),还揭示了新的洞察,就如何对逆问题的方法如何协同组合扩散模型。具有超分辨率,图像染色和压缩传感MRI的实验结果表明,我们的方法可以在显着降低的采样步骤中实现最先进的重建性能。
translated by 谷歌翻译
In this work, we propose DiffWave, a versatile diffusion probabilistic model for conditional and unconditional waveform generation. The model is non-autoregressive, and converts the white noise signal into structured waveform through a Markov chain with a constant number of steps at synthesis. It is efficiently trained by optimizing a variant of variational bound on the data likelihood. DiffWave produces high-fidelity audio in different waveform generation tasks, including neural vocoding conditioned on mel spectrogram, class-conditional generation, and unconditional generation. We demonstrate that DiffWave matches a strong WaveNet vocoder in terms of speech quality (MOS: 4.44 versus 4.43), while synthesizing orders of magnitude faster. In particular, it significantly outperforms autoregressive and GAN-based waveform models in the challenging unconditional generation task in terms of audio quality and sample diversity from various automatic and human evaluations. 1 * Contributed to the work during an internship at Baidu Research, USA. 1 Audio samples are in: https://diffwave-demo.github.io/
translated by 谷歌翻译
从语音音频中删除背景噪音一直是大量研究和努力的主题,尤其是由于虚拟沟通和业余声音录制的兴起,近年来。然而,背景噪声并不是唯一可以防止可理解性的不愉快干扰:混响,剪裁,编解码器工件,有问题的均衡,有限的带宽或不一致的响度同样令人不安且无处不在。在这项工作中,我们建议将言语增强的任务视为一项整体努力,并提出了一种普遍的语音增强系统,同时解决了55种不同的扭曲。我们的方法由一种使用基于得分的扩散的生成模型以及一个多分辨率调节网络,该网络通过混合密度网络进行增强。我们表明,这种方法在专家听众执行的主观测试中大大优于艺术状态。我们还表明,尽管没有考虑任何特定的快速采样策略,但它仅通过4-8个扩散步骤就可以实现竞争性的目标得分。我们希望我们的方法论和技术贡献都鼓励研究人员和实践者采用普遍的语音增强方法,可能将其作为一项生成任务。
translated by 谷歌翻译
Score-based modeling through stochastic differential equations (SDEs) has provided a new perspective on diffusion models, and demonstrated superior performance on continuous data. However, the gradient of the log-likelihood function, i.e., the score function, is not properly defined for discrete spaces. This makes it non-trivial to adapt \textcolor{\cdiff}{the score-based modeling} to categorical data. In this paper, we extend diffusion models to discrete variables by introducing a stochastic jump process where the reverse process denoises via a continuous-time Markov chain. This formulation admits an analytical simulation during backward sampling. To learn the reverse process, we extend score matching to general categorical data and show that an unbiased estimator can be obtained via simple matching of the conditional marginal distributions. We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
translated by 谷歌翻译
扩散模型是一类深入生成模型,在具有密集理论建立的各种任务上显示出令人印象深刻的结果。尽管与其他最先进的模型相比,扩散模型的样本合成质量和多样性令人印象深刻,但它们仍然遭受了昂贵的抽样程序和次优可能的估计。最近的研究表明,对提高扩散模型的性能的热情非常热情。在本文中,我们对扩散模型的现有变体进行了首次全面综述。具体而言,我们提供了扩散模型的第一个分类法,并将它们分类为三种类型,即采样加速增强,可能性最大化的增强和数据将来增强。我们还详细介绍了其他五个生成模型(即变异自动编码器,生成对抗网络,正常流量,自动回归模型和基于能量的模型),并阐明扩散模型与这些生成模型之间的连接。然后,我们对扩散模型的应用进行彻底研究,包括计算机视觉,自然语言处理,波形信号处理,多模式建模,分子图生成,时间序列建模和对抗性纯化。此外,我们提出了与这种生成模型的发展有关的新观点。
translated by 谷歌翻译
扩散模型已成为深层生成建模的最有希望的框架之一。在这项工作中,我们探讨了不均匀扩散模型的潜力。我们表明,非均匀扩散会导致多尺度扩散模型,这些模型与多尺度归一化流的结构相似。我们从实验上发现,在相同或更少的训练时间中,多尺度扩散模型比标准均匀扩散模型获得更好的FID得分。更重要的是,它生成样品$ 4.4 $ 4.4美元的$ 4.4 $ $ 128 \ times 128 $分辨率。在使用更多量表的较高分辨率中,预计加速度将更高。此外,我们表明,不均匀的扩散导致有条件得分函数的新估计量,该估计函数以最新的条件降解估计量以PAR性能达到了PAR性能。我们的理论和实验性发现伴随着开源库MSDIFF,可以促进对非均匀扩散模型的进一步研究。
translated by 谷歌翻译
我们提出了一种新颖的方式来调节预验证的denoising扩散语音模型,以在训练期间看不见的新颖人的声音产生言语。该方法需要目标人的短(〜3秒)样本,并且在推理时间内产生,没有任何训练步骤。该方法的核心是采样过程,将denoising模型的估计与新扬声器样本的低通版本结合在一起。客观和主观评估表明,我们的抽样方法可以在频率方面产生与目标扬声器相似的声音,其准确性与最新方法相当,并且没有训练。
translated by 谷歌翻译