Diffusion-based generative models have had a high impact on the computer vision and speech processing communities these past years. Besides data generation tasks, they have also been employed for data restoration tasks like speech enhancement and dereverberation. While discriminative models have traditionally been argued to be more powerful e.g. for speech enhancement, generative diffusion approaches have recently been shown to narrow this performance gap considerably. In this paper, we systematically compare the performance of generative diffusion models and discriminative approaches on different speech restoration tasks. For this, we extend our prior contributions on diffusion-based speech enhancement in the complex time-frequency domain to the task of bandwith extension. We then compare it to a discriminatively trained neural network with the same network architecture on three restoration tasks, namely speech denoising, dereverberation and bandwidth extension. We observe that the generative approach performs globally better than its discriminative counterpart on all tasks, with the strongest benefit for non-additive distortion models, like in dereverberation and bandwidth extension. Code and audio examples can be found online at https://uhh.de/inf-sp-sgmsemultitask
translated by 谷歌翻译
Diffusion models have shown a great ability at bridging the performance gap between predictive and generative approaches for speech enhancement. We have shown that they may even outperform their predictive counterparts for non-additive corruption types or when they are evaluated on mismatched conditions. However, diffusion models suffer from a high computational burden, mainly as they require to run a neural network for each reverse diffusion step, whereas predictive approaches only require one pass. As diffusion models are generative approaches they may also produce vocalizing and breathing artifacts in adverse conditions. In comparison, in such difficult scenarios, predictive models typically do not produce such artifacts but tend to distort the target speech instead, thereby degrading the speech quality. In this work, we present a stochastic regeneration approach where an estimate given by a predictive model is provided as a guide for further diffusion. We show that the proposed approach uses the predictive model to remove the vocalizing and breathing artifacts while producing very high quality samples thanks to the diffusion model, even in adverse conditions. We further show that this approach enables to use lighter sampling schemes with fewer diffusion steps without sacrificing quality, thus lifting the computational burden by an order of magnitude. Source code and audio examples are available online (https://uhh.de/inf-sp-storm).
translated by 谷歌翻译
最近,基于扩散的生成模型已引入语音增强的任务。干净的语音损坏被建模为固定的远期过程,其中逐渐添加了越来越多的噪声。通过学习以嘈杂的输入为条件的迭代方式扭转这一过程,可以产生干净的语音。我们以先前的工作为基础,并在随机微分方程的形式主义中得出训练任务。我们对基础分数匹配目标进行了详细的理论综述,并探索了不同的采样器配置,以解决测试时的反向过程。通过使用自然图像生成文献的复杂网络体系结构,与以前的出版物相比,我们可以显着提高性能。我们还表明,我们可以与最近的判别模型竞争,并在评估与培训不同的语料库时获得更好的概括。我们通过主观的听力测试对评估结果进行补充,其中我们提出的方法是最好的。此外,我们表明所提出的方法在单渠道语音覆盖中实现了出色的最新性能。我们的代码和音频示例可在线获得,请参见https://uhh.de/inf-sp-sgmse
translated by 谷歌翻译
基于分数的生成模型(SGM)最近显示了难以生成的任务的令人印象深刻的结果,例如自然图像和音频信号的无条件生成和条件生成。在这项工作中,我们将这些模型扩展到复杂的短时傅立叶变换(STFT)域,并提出了使用复杂值的深神经网络来增强语音的新型训练任务。我们在随机微分方程(SDE)的形式主义中得出了这项训练任务,从而实现了预测器 - 矫正器采样器的使用。我们提供了以前出版物启发的替代配方,以使用生成扩散模型来增强语音,从而避免了对噪声分布的任何先前假设的需求,并使训练任务纯粹是生成纯生成的,这是我们所显示的,从而改善了增强性能。
translated by 谷歌翻译
Diffusion probabilistic models have been recently used in a variety of tasks, including speech enhancement and synthesis. As a generative approach, diffusion models have been shown to be especially suitable for imputation problems, where missing data is generated based on existing data. Phase retrieval is inherently an imputation problem, where phase information has to be generated based on the given magnitude. In this work we build upon previous work in the speech domain, adapting a speech enhancement diffusion model specifically for STFT phase retrieval. Evaluation using speech quality and intelligibility metrics shows the diffusion approach is well-suited to the phase retrieval task, with performance surpassing both classical and modern methods.
translated by 谷歌翻译
从语音音频中删除背景噪音一直是大量研究和努力的主题,尤其是由于虚拟沟通和业余声音录制的兴起,近年来。然而,背景噪声并不是唯一可以防止可理解性的不愉快干扰:混响,剪裁,编解码器工件,有问题的均衡,有限的带宽或不一致的响度同样令人不安且无处不在。在这项工作中,我们建议将言语增强的任务视为一项整体努力,并提出了一种普遍的语音增强系统,同时解决了55种不同的扭曲。我们的方法由一种使用基于得分的扩散的生成模型以及一个多分辨率调节网络,该网络通过混合密度网络进行增强。我们表明,这种方法在专家听众执行的主观测试中大大优于艺术状态。我们还表明,尽管没有考虑任何特定的快速采样策略,但它仅通过4-8个扩散步骤就可以实现竞争性的目标得分。我们希望我们的方法论和技术贡献都鼓励研究人员和实践者采用普遍的语音增强方法,可能将其作为一项生成任务。
translated by 谷歌翻译
使用Denoisis扩散概率模型(DDPM)的神经声码器已通过适应给定的声学特征的扩散噪声分布来改善。在这项研究中,我们提出了适应扩散噪声的素描,以使其随时间变化的光谱包络变得接近条件对数 - 摩尔光谱图。随着时变的过滤这种适应可改善声音质量,尤其是在高频带中。它是在时频域中处理的,以使计算成本几乎与常规DDPM基于DDPM的神经声码器相同。实验结果表明,在分析合成和语音增强方案中,Specgrad比常规DDPM的神经声码器产生比常规DDPM的更高的语音波形。音频演示可在wavegrad.github.io/specgrad/上获得。
translated by 谷歌翻译
语音转换是一项常见的语音综合任务,可以根据特定的现实情况来以不同的方式解决。最具挑战性的人通常被称为单一镜头多次的语音转换是在最一般的情况下,从一个参考语音中复制目标语音,而源和目标扬声器都不属于培训数据集。我们提出了一种基于扩散概率建模的可扩展高质量解决方案,与最新的单发语音转换方法相比,它表现出了优质的质量。此外,我们专注于实时应用程序,我们研究了可以更快地使扩散模型的一般原则,同时将合成质量保持在高水平。结果,我们开发了一种新型的随机微分方程求解器,适用于各种扩散模型类型和生成任务,如经验研究所示,并通过理论分析证明了它。
translated by 谷歌翻译
我们定义了更广泛的腐败过程,该过程概括了先前已知的扩散模型。为了扭转这些一般的扩散,我们提出了一个称为“软得分匹配”的新目标,可以证明可以学习任何线性腐败过程的得分功能,并为Celeba提供最先进的结果。软得分匹配结合了网络中的降解过程,并训练模型以预测腐败与扩散观察相匹配的干净图像。我们表明,我们的目标在适当的规律性条件下为腐败过程的家庭学习了可能性的梯度。我们进一步开发了一种原则性的方法,以选择一般扩散过程的损坏水平和一种我们称为动量采样器的新型抽样方法。我们评估了我们的框架,腐败是高斯模糊和低幅度添加噪声。我们的方法在Celeba-64上获得了最先进的FID得分$ 1.85 $,表现优于所有以前的线性扩散模型。与香草deno的扩散相比,我们还显示出显着的计算益处。
translated by 谷歌翻译
扩散概率模型已经证明了通过配对的扩散和反向过程模拟自然图像和原始音频波形的出色能力。可以利用反向过程的唯一特性(即,从高斯噪声和噪声信号中消除非目标信号)来恢复清洁信号。基于此属性,我们提出了一种基于扩散的基于概率模型的语言增强(漫反射)模型,其旨在从嘈杂的信号中恢复清洁语音信号。所提出的漫射模型的基本架构类似于差异 - 一种具有相对低的计算成本和足迹的高质量音频波形生成模型。为了获得更好的增强性能,我们设计了先进的反向过程,称为支持性反向过程,在每个时间步骤到预测的语音,这会增加噪音。实验结果表明,漫反射率与标准化语音银行语料库SE任务上的相关音频生成模型相当的性能。此外,相对于普遍建议的完整采样时间表,所提出的支持逆过程特别改善了快速采样,采取了几个步骤,从而产生更好的增强,从而通过传统的完整步长推断过程。
translated by 谷歌翻译
在本文中,提出了一种用于加权预测误差(WPE)方法的Kalman滤波变体的神经网络增强算法。滤波器随机变化是通过使用过滤器残留误差和信号特性端对端的深神经网络(DNN)预测的。提出的框架允许在类似于Whamr!的单渠道嘈杂的混响数据集上进行稳健的编织。当目标语音功率频谱密度不完全了解并且观察值嘈杂时,Kalman过滤WPE仅预测剩余误差的滤波器变化时,才会在增强信号中引入失真。提出的方法通过以数据驱动的方式纠正滤波器变化估计来避免这些扭曲,从而将方法的鲁棒性增加到噪声方案。此外,与DNN支持的递归最小二乘正方形变体相比,它产生了强烈的脊椎和脱氧性能,尤其是对于高度嘈杂的输入。
translated by 谷歌翻译
DeNoising扩散模型代表了计算机视觉中最新的主题,在生成建模领域表现出了显着的结果。扩散模型是一个基于两个阶段的深层生成模型,一个正向扩散阶段和反向扩散阶段。在正向扩散阶段,通过添加高斯噪声,输入数据在几个步骤中逐渐受到干扰。在反向阶段,模型的任务是通过学习逐步逆转扩散过程来恢复原始输入数据。尽管已知的计算负担,即由于采样过程中涉及的步骤数量,扩散模型对生成样品的质量和多样性得到了广泛赞赏。在这项调查中,我们对视觉中应用的denoising扩散模型的文章进行了全面综述,包括该领域的理论和实际贡献。首先,我们识别并介绍了三个通用扩散建模框架,这些框架基于扩散概率模型,噪声调节得分网络和随机微分方程。我们进一步讨论了扩散模型与其他深层生成模型之间的关系,包括变异自动编码器,生成对抗网络,基于能量的模型,自回归模型和正常流量。然后,我们介绍了计算机视觉中应用的扩散模型的多角度分类。最后,我们说明了扩散模型的当前局限性,并设想了一些有趣的未来研究方向。
translated by 谷歌翻译
降级扩散概率模型(DDPM)最近在许多生成任务中都取得了领先的性能。但是,继承的迭代采样过程成本阻碍了他们的应用程序到文本到语音部署。通过有关扩散模型参数化的初步研究,我们发现以前基于梯度的TTS模型需要数百或数千个迭代以保证高样本质量,这对加速采样带来了挑战。在这项工作中,我们提出了Prodiff的建议,以用于高质量文本到语音的渐进快速扩散模型。与以前的估计数据密度梯度的工作不同,Prodiff通过直接预测清洁数据来避免在加速采样时避免明显的质量降解来参数化denoising模型。为了通过减少扩散迭代来应对模型收敛挑战,Prodiff通过知识蒸馏减少目标位点的数据差异。具体而言,Denoising模型使用N-Step DDIM教师的生成的MEL光谱图作为训练目标,并将行为提炼成具有N/2步的新模型。因此,它允许TTS模型做出尖锐的预测,并通过数量级进一步减少采样时间。我们的评估表明,Prodiff仅需要两次迭代即可合成高保真性MEL光谱图,同时使用数百个步骤保持样本质量和多样性与最先进的模型竞争。 Prodiff在单个NVIDIA 2080TI GPU上的采样速度比实时快24倍,这使得扩散模型实际上是第一次适用于文本到语音综合部署。我们广泛的消融研究表明,Prodiff中的每种设计都是有效的,我们进一步表明,Prodiff可以轻松扩展到多扬声器设置。音频样本可在\ url {https://prodiff.github.io/。}上找到
translated by 谷歌翻译
在不利天气条件下的图像恢复对各种计算机视觉应用引起了重大兴趣。最近的成功方法取决于深度神经网络架构设计(例如,具有视觉变压器)的当前进展。由最新的条件生成模型取得的最新进展的动机,我们提出了一种基于贴片的图像恢复算法,基于脱氧扩散概率模型。我们的基于贴片的扩散建模方法可以通过使用指导的DeNoising过程进行尺寸 - 不足的图像恢复,并在推理过程中对重叠贴片进行平滑的噪声估计。我们在基准数据集上经验评估了我们的模型,以进行图像,混合的降低和飞行以及去除雨滴的去除。我们展示了我们在特定天气和多天气图像恢复上实现最先进的表演的方法,并在质量上表现出对现实世界测试图像的强烈概括。
translated by 谷歌翻译
由于其高质量的重建以及将现有迭代求解器结合起来的易于性,因此最近将扩散模型作为强大的生成反问题解决器研究。但是,大多数工作都专注于在无噪声设置中解决简单的线性逆问题,这显着不足以使实际问题的复杂性不足。在这项工作中,我们将扩散求解器扩展求解器,以通过后采样的拉普拉斯近似有效地处理一般噪声(非)线性反问题。有趣的是,所得的后验采样方案是扩散采样的混合版本,具有歧管约束梯度,而没有严格的测量一致性投影步骤,与先前的研究相比,在嘈杂的设置中产生了更可取的生成路径。我们的方法表明,扩散模型可以结合各种测量噪声统计量,例如高斯和泊松,并且还有效处理嘈杂的非线性反问题,例如傅立叶相检索和不均匀的脱毛。
translated by 谷歌翻译
过去十年已经开发了各种各样的深度生成模型。然而,这些模型通常同时努力解决三个关键要求,包括:高样本质量,模式覆盖和快速采样。我们称之为这些要求所征收的挑战是生成的学习Trielemma,因为现有模型经常为他人交易其中一些。特别是,去噪扩散模型表明了令人印象深刻的样本质量和多样性,但它们昂贵的采样尚未允许它们在许多现实世界应用中应用。在本文中,我们认为这些模型中的缓慢采样基本上归因于去噪步骤中的高斯假设,这些假设仅针对小型尺寸的尺寸。为了使得具有大步骤的去噪,从而减少去噪步骤的总数,我们建议使用复杂的多模态分布来模拟去噪分布。我们引入了去噪扩散生成的对抗网络(去噪扩散GANS),其使用多模式条件GaN模拟每个去噪步骤。通过广泛的评估,我们表明去噪扩散GAN获得原始扩散模型的样本质量和多样性,而在CIFAR-10数据集中是2000 $ \时代。与传统的GAN相比,我们的模型表现出更好的模式覆盖和样本多样性。据我们所知,去噪扩散GaN是第一模型,可在扩散模型中降低采样成本,以便允许它们廉价地应用于现实世界应用。项目页面和代码:https://nvlabs.github.io/denoising-diffusion-gan
translated by 谷歌翻译
扩散模型已成为深层生成建模的最有希望的框架之一。在这项工作中,我们探讨了不均匀扩散模型的潜力。我们表明,非均匀扩散会导致多尺度扩散模型,这些模型与多尺度归一化流的结构相似。我们从实验上发现,在相同或更少的训练时间中,多尺度扩散模型比标准均匀扩散模型获得更好的FID得分。更重要的是,它生成样品$ 4.4 $ 4.4美元的$ 4.4 $ $ 128 \ times 128 $分辨率。在使用更多量表的较高分辨率中,预计加速度将更高。此外,我们表明,不均匀的扩散导致有条件得分函数的新估计量,该估计函数以最新的条件降解估计量以PAR性能达到了PAR性能。我们的理论和实验性发现伴随着开源库MSDIFF,可以促进对非均匀扩散模型的进一步研究。
translated by 谷歌翻译
我们提出了一种新颖的方式来调节预验证的denoising扩散语音模型,以在训练期间看不见的新颖人的声音产生言语。该方法需要目标人的短(〜3秒)样本,并且在推理时间内产生,没有任何训练步骤。该方法的核心是采样过程,将denoising模型的估计与新扬声器样本的低通版本结合在一起。客观和主观评估表明,我们的抽样方法可以在频率方面产生与目标扬声器相似的声音,其准确性与最新方法相当,并且没有训练。
translated by 谷歌翻译
目的:心电图(ECG)信号通常会遭受噪声干扰,例如基线徘徊。心电图信号的高质量和高保真重建对于诊断心血管疾病具有重要意义。因此,本文提出了一种新型的心电图基线徘徊和降噪技术。方法:我们以特定于心电图信号的条件方式扩展模型,即心电图基线徘徊和噪声去除(Descod-ECG)的基于深度分数的扩散模型。此外,我们部署了一个多拍的平均策略,以改善信号重建。我们在QT数据库和MIT-BIH噪声应力测试数据库上进行了实验,以验证该方法的可行性。采用基线方法进行比较,包括传统的基于数字过滤器和基于深度学习的方法。结果:数量评估结果表明,所提出的方法在四个基于距离的相似性指标(平方距离的总和,最大绝对正方形,根距离的百分比和余弦相似性)上获得了出色的性能,并具有3.771 $ \ pm $ 5.713 au,$ 5.713 au, 0.329 $ \ pm $ 0.258 au,40.527 $ \ pm $ 26.258 \%和0.926 $ \ pm $ 0.087。与最佳基线方法相比,这至少导致了至少20%的总体改进。结论:本文证明了Descod-ECG的最新性能用于ECG噪声,该噪声可以更好地近似真实的数据分布和在极端噪声腐败下较高的稳定性。意义:这项研究是最早扩展基于条件扩散的生成模型以去除ECG噪声的研究之一,并且Descod-ECG具有广泛用于生物医学应用的潜力。
translated by 谷歌翻译
基于得分的扩散模型已成为深度生成型号最有前途的框架之一。在这项工作中,我们对基于得分的扩散模型进行了学习条件概率分布的不同方法的系统比较和理论分析。特别是,我们证明了结果为条件分数最成功的估算之一提供了理论典范。此外,我们引入了多速扩散框架,这导致了一个新的估算器,用于条件得分,与先前的最先进的方法相提并论。我们的理论和实验结果伴随着开源库MSDIFF,允许应用和进一步研究多速扩散模型。
translated by 谷歌翻译