人类免疫系统(HIS)致力于保护人体免受感染,疾病和疾病的侵害。该系统可以激发网络安全专业人员设计基于人造免疫系统(AIS)的入侵检测系统(IDS)。这些生物学启发的算法使用自我/非自然和危险理论可以直接增强设计和实现。在本文中,我们包括研究建立AIS-IDS框架所必需的设计元素,并提出一个建筑以创建此类系统。
translated by 谷歌翻译
人工智能(AI)和机器学习(ML)在网络安全挑战中的应用已在行业和学术界的吸引力,部分原因是对关键系统(例如云基础架构和政府机构)的广泛恶意软件攻击。入侵检测系统(IDS)使用某些形式的AI,由于能够以高预测准确性处理大量数据,因此获得了广泛的采用。这些系统托管在组织网络安全操作中心(CSOC)中,作为一种防御工具,可监视和检测恶意网络流,否则会影响机密性,完整性和可用性(CIA)。 CSOC分析师依靠这些系统来决定检测到的威胁。但是,使用深度学习(DL)技术设计的IDS通常被视为黑匣子模型,并且没有为其预测提供理由。这为CSOC分析师造成了障碍,因为他们无法根据模型的预测改善决策。解决此问题的一种解决方案是设计可解释的ID(X-IDS)。这项调查回顾了可解释的AI(XAI)的最先进的ID,目前的挑战,并讨论了这些挑战如何涉及X-ID的设计。特别是,我们全面讨论了黑匣子和白盒方法。我们还在这些方法之间的性能和产生解释的能力方面提出了权衡。此外,我们提出了一种通用体系结构,该建筑认为人类在循环中,该架构可以用作设计X-ID时的指南。研究建议是从三个关键观点提出的:需要定义ID的解释性,需要为各种利益相关者量身定制的解释以及设计指标来评估解释的需求。
translated by 谷歌翻译
现代人工智能(AI)启用了入侵检测系统(IDS)是复杂的黑匣子。这意味着安全分析师对IDS模型为何做出特定预测的原因几乎没有解释或澄清。解决此问题的一个潜在解决方案是基于可解释的人工智能(XAI)的当前能力研究和开发可解释的入侵检测系统(X-IDS)。在本文中,我们创建了一个基于自组织的X-IDS系统,能够产生解释性的可视化。我们利用SOM的解释性来创建全球和本地解释。分析师可以使用全局解释来了解特定IDS如何计算预测的一般想法。为单个数据点生成了局部说明,以解释为什么计算某个预测值的原因。此外,使用NSL-KDD和CIC-IDS-2017数据集评估了我们基于SOM的X-IDS在解释生成和传统准确性测试中评估。
translated by 谷歌翻译
科学和工程学的进步通常揭示了最初用于理解,预测和控制现象的经典方法的局限性。随着进步,通常必须重新评估概念类别,以更好地跟踪最近在学科中发现的不变性。完善框架并解决学科之间的界限是至关重要的,以便它们更好地促进而不是限制实验方法和能力。在本文中,我们讨论了发育生物学,计算机科学和机器人技术的交集问题。在生物机器人的背景下,我们探索了概念,信息和生命科学的最新进展所驱动的概念和以前不同领域的变化。本文中,每个作者都提供了自己对该主题的看法,并由他们自己的纪律培训构成。我们认为,与计算一样,发育生物学和机器人技术的某些方面与特定材料无关。相反,这些领域的一致性可以帮助阐明多尺度控制,自组装以及形式与功能之间的关系。我们希望由于克服技术局限性而引起的界限,可以出现新的领域,从而将实际应用从再生医学到有用的合成生命机器。
translated by 谷歌翻译
The applicability of computational models to the biological world is an active topic of debate. We argue that a useful path forward results from abandoning hard boundaries between categories and adopting an observer-dependent, pragmatic view. Such a view dissolves the contingent dichotomies driven by human cognitive biases (e.g., tendency to oversimplify) and prior technological limitations in favor of a more continuous, gradualist view necessitated by the study of evolution, developmental biology, and intelligent machines. Efforts to re-shape living systems for biomedical or bioengineering purposes require prediction and control of their function at multiple scales. This is challenging for many reasons, one of which is that living systems perform multiple functions in the same place at the same time. We refer to this as "polycomputing" - the ability of the same substrate to simultaneously compute different things. This ability is an important way in which living things are a kind of computer, but not the familiar, linear, deterministic kind; rather, living things are computers in the broad sense of computational materials as reported in the rapidly-growing physical computing literature. We argue that an observer-centered framework for the computations performed by evolved and designed systems will improve the understanding of meso-scale events, as it has already done at quantum and relativistic scales. Here, we review examples of biological and technological polycomputing, and develop the idea that overloading of different functions on the same hardware is an important design principle that helps understand and build both evolved and designed systems. Learning to hack existing polycomputing substrates, as well as evolve and design new ones, will have massive impacts on regenerative medicine, robotics, and computer engineering.
translated by 谷歌翻译
机器学习(ML)代表了当前和未来信息系统的关键技术,许多域已经利用了ML的功能。但是,网络安全中ML的部署仍处于早期阶段,揭示了研究和实践之间的显着差异。这种差异在当前的最新目的中具有其根本原因,该原因不允许识别ML在网络安全中的作用。除非广泛的受众理解其利弊,否则ML的全部潜力将永远不会释放。本文是对ML在整个网络安全领域中的作用的首次尝试 - 对任何对此主题感兴趣的潜在读者。我们强调了ML在人类驱动的检测方法方面的优势,以及ML在网络安全方面可以解决的其他任务。此外,我们阐明了影响网络安全部署实际ML部署的各种固有问题。最后,我们介绍了各种利益相关者如何为网络安全中ML的未来发展做出贡献,这对于该领域的进一步进步至关重要。我们的贡献补充了两项实际案例研究,这些案例研究描述了ML作为对网络威胁的辩护的工业应用。
translated by 谷歌翻译
随着数字时代的出现,由于技术进步,每天的任务都是自动化的。但是,技术尚未为人们提供足够的工具和保障措施。随着互联网连接全球越来越多的设备,确保连接设备的问题以均匀的螺旋速率增长。数据盗窃,身份盗窃,欺诈交易,密码妥协和系统漏洞正在成为常规的日常新闻。最近的人工智能进步引起了网络攻击的激烈威胁。 AI几乎应用于不同科学和工程的每个领域。 AI的干预不仅可以使特定任务自动化,而且可以提高效率。因此,很明显,如此美味的传播对网络犯罪分子来说是非常开胃的。因此,传统的网络威胁和攻击现在是``智能威胁''。本文讨论了网络安全和网络威胁,以及传统和智能的防御方式,以防止网络攻击。最终,结束讨论,以潜在的潜在前景结束讨论AI网络安全。
translated by 谷歌翻译
生命的起源被神秘笼罩着,几乎没有生存线索,被进化竞争所掩盖。先前的评论涉及自上而下和自下而上的合成生物学的互补方法,以增强我们对生活系统的理解。在这里,我们指出这些领域之间的协同作用,尤其是自下而上的合成生物学和生命研究起源之间。我们探讨了与拥挤的细胞,其新陈代谢以及生长和分裂周期以及如何开始合并这些努力的人造细胞隔室取得的最新进展。尽管当前生活的复杂性是其最引人注目的特征之一,但人生的基本特征都不需要它,而且它们从一开始就不太可能出现因此而变得复杂。当前的研究不是通过恢复一个真正的起源而恢复真正的起源,而是通过挑出一组基本组成部分可能产生的复杂性和进化而融合了最小生命的出现。
translated by 谷歌翻译
医学事物互联网(IOMT)允许使用传感器收集生理数据,然后将其传输到远程服务器,这使医生和卫生专业人员可以连续,永久地分析这些数据,并在早期阶段检测疾病。但是,使用无线通信传输数据将其暴露于网络攻击中,并且该数据的敏感和私人性质可能代表了攻击者的主要兴趣。在存储和计算能力有限的设备上使用传统的安全方法无效。另一方面,使用机器学习进行入侵检测可以对IOMT系统的要求提供适应性的安全响应。在这种情况下,对基于机器学习(ML)的入侵检测系统如何解决IOMT系统中的安全性和隐私问题的全面调查。为此,提供了IOMT的通用三层体系结构以及IOMT系统的安全要求。然后,出现了可能影响IOMT安全性的各种威胁,并确定基于ML的每个解决方案中使用的优势,缺点,方法和数据集。最后,讨论了在IOMT的每一层中应用ML的一些挑战和局限性,这些挑战和局限性可以用作未来的研究方向。
translated by 谷歌翻译
虽然在现代车辆中无处不在,但控制器区域网络(罐)缺乏基本的安全性,并且很容易利用。已经出现了一种快速增长的能够安全研究领域,寻求检测罐头的入侵。由于大多数研究人员需要昂贵的资产和专业知识,因此生产车辆的数据与各种入侵的数据遥不可及。为协助研究人员,我们向现有开放的第一个全面指南介绍了现有的可入侵数据集,包括每个数据集的质量分析以及每个人的好处,缺点和建议用例的列举。目前的公众可以IDS数据集仅限于实际制造(简单的消息注入)攻击和模拟攻击通常在合成数据中,缺乏保真度。通常,在可用的数据集中不验证攻击车辆对车辆的物理效果。只有一个数据集提供信号翻译数据,但不是相应的原始二进制版本。总的来说,可用的数据鸽子孔可以IDS在有限的有限情况下重新测试,通常是不恰当的数据(通常具有太容易检测到真正测试该方法的攻击),并且这种缺乏数据具有延迟的可比性和再现性的结果。作为我们的主要贡献,我们介绍了道路(真正的ORNL汽车测力计)可以入侵数据集,包括超过3.5小时的一辆车辆的数据。道路含有在各种活动中记录的环境数据,以及随着多种变体和实际模糊,制造和独特的先进攻击以及模拟化妆舞会攻击的攻击。为了便于基准测试可以IDS方法需要信号翻译的输入,我们还提供了许多可以捕获的信号时间序列格式。我们的贡献旨在促进CAN IDS领域的适当基准和所需的可比性。
translated by 谷歌翻译
2021年8月,圣达菲研究所举办了一个关于集体智力的研讨会,是智力项目基础的一部分。该项目旨在通过促进智能性质的跨学科研究来推进人工智能领域。该研讨会汇集了计算机科学家,生物学家,哲学家,社会科学家和其他人,以分享他们对多种代理人之间的互动产生的洞察力的见解 - 是否这些代理商是机器,动物或人类。在本报告中,我们总结了每个会谈和随后的讨论。我们还借出了许多关键主题,并确定未来研究的重要前沿。
translated by 谷歌翻译
Agent-based modeling (ABM) is a well-established paradigm for simulating complex systems via interactions between constituent entities. Machine learning (ML) refers to approaches whereby statistical algorithms 'learn' from data on their own, without imposing a priori theories of system behavior. Biological systems -- from molecules, to cells, to entire organisms -- consist of vast numbers of entities, governed by complex webs of interactions that span many spatiotemporal scales and exhibit nonlinearity, stochasticity and intricate coupling between entities. The macroscopic properties and collective dynamics of such systems are difficult to capture via continuum modelling and mean-field formalisms. ABM takes a 'bottom-up' approach that obviates these difficulties by enabling one to easily propose and test a set of well-defined 'rules' to be applied to the individual entities (agents) in a system. Evaluating a system and propagating its state over discrete time-steps effectively simulates the system, allowing observables to be computed and system properties to be analyzed. Because the rules that govern an ABM can be difficult to abstract and formulate from experimental data, there is an opportunity to use ML to help infer optimal, system-specific ABM rules. Once such rule-sets are devised, ABM calculations can generate a wealth of data, and ML can be applied there too -- e.g., to probe statistical measures that meaningfully describe a system's stochastic properties. As an example of synergy in the other direction (from ABM to ML), ABM simulations can generate realistic datasets for training ML algorithms (e.g., for regularization, to mitigate overfitting). In these ways, one can envision various synergistic ABM$\rightleftharpoons$ML loops. This review summarizes how ABM and ML have been integrated in contexts that span spatiotemporal scales, from cellular to population-level epidemiology.
translated by 谷歌翻译
数据集对于将AI算法应用于网络物理系统(CPS)安全性至关重要。由于实际CPS数据集的稀缺性,研究人员选择使用真实或虚拟化测试台生成自己的数据集。但是,与其他AI域不同,CPS是一个复杂的系统,具有许多确定其行为的接口。仅包含传感器测量和网络流量集合的数据集可能不足以开发弹性的AI防御或进攻剂。在本文中,我们研究了捕获系统行为和交互所需的CPS安全数据集的\ emph {Elements},并提出了一个数据集体系结构,该架构有可能增强AI算法在保护网络物理系统方面的性能。该框架包括数据集元素,攻击表示和所需的数据集功能。我们将现有数据集与建议的体系结构进行比较,以识别当前局限性,并使用TestBeds讨论CPS数据集生成的未来。
translated by 谷歌翻译
尽管人工神经网络(ANN)取得了重大进展,但其设计过程仍在臭名昭著,这主要取决于直觉,经验和反复试验。这个依赖人类的过程通常很耗时,容易出现错误。此外,这些模型通常与其训练环境绑定,而没有考虑其周围环境的变化。神经网络的持续适应性和自动化对于部署后模型可访问性的几个领域至关重要(例如,IoT设备,自动驾驶汽车等)。此外,即使是可访问的模型,也需要频繁的维护后部署后,以克服诸如概念/数据漂移之类的问题,这可能是繁琐且限制性的。当前关于自适应ANN的艺术状况仍然是研究的过早领域。然而,一种自动化和持续学习形式的神经体系结构搜索(NAS)最近在深度学习研究领域中获得了越来越多的动力,旨在提供更强大和适应性的ANN开发框架。这项研究是关于汽车和CL之间交集的首次广泛综述,概述了可以促进ANN中充分自动化和终身可塑性的不同方法的研究方向。
translated by 谷歌翻译
我们为大脑和行为提供了一般的理论框架,这些框架是进化的和计算方式。我们抽象模型中的大脑是一个节点和边缘网络。虽然它与标准神经网络模型有一些相似之处,但随着我们所示,存在一些显着差异。我们网络中的节点和边缘都具有权重和激活级别。它们充当使用一组相对简单的规则来确定激活级别和权重的概率传感器,以通过输入,生成输出,并相互影响。我们表明这些简单的规则能够实现允许网络代表越来越复杂的知识的学习过程,并同时充当促进规划,决策和行为执行的计算设备。通过指定网络的先天(遗传)组件,我们展示了进化如何以初始的自适应规则和目标赋予网络,然后通过学习来丰富。我们展示了网络的开发结构(这决定了大脑可以做些什么以及如何良好)受影响数据输入分布的机制和确定学习参数的机制之间的共同进化协调的批判性影响(在程序中使用按节点和边缘运行)。最后,我们考虑了模型如何占了学习领域的各种调查结果,如何解决思想和行为的一些挑战性问题,例如与设定目标和自我控制相关的问题,以及它如何帮助理解一些认知障碍。
translated by 谷歌翻译
这篇理论文章研究了如何在计算机中构建类似人类的工作记忆和思维过程。应该有两个工作记忆存储,一个类似于关联皮层中的持续点火,另一个类似于大脑皮层中的突触增强。这些商店必须通过环境刺激或内部处理产生的新表示不断更新。它们应该连续更新,并以一种迭代的方式进行更新,这意味着在下一个状态下,应始终保留一组共同工作中的某些项目。因此,工作记忆中的一组概念将随着时间的推移逐渐发展。这使每个状态都是对先前状态的修订版,并导致连续的状态与它们所包含的一系列表示形式重叠和融合。随着添加新表示形式并减去旧表示形式,在这些更改过程中,有些保持活跃几秒钟。这种持续活动,类似于人工复发性神经网络中使用的活动,用于在整个全球工作区中传播激活能量,以搜索下一个关联更新。结果是能够朝着解决方案或目标前进的联想连接的中间状态链。迭代更新在这里概念化为信息处理策略,一种思想流的计算和神经生理决定因素以及用于设计和编程人工智能的算法。
translated by 谷歌翻译
Artificial Intelligence (AI) and Machine Learning (ML) are weaving their way into the fabric of society, where they are playing a crucial role in numerous facets of our lives. As we witness the increased deployment of AI and ML in various types of devices, we benefit from their use into energy-efficient algorithms for low powered devices. In this paper, we investigate a scale and medium that is far smaller than conventional devices as we move towards molecular systems that can be utilized to perform machine learning functions, i.e., Molecular Machine Learning (MML). Fundamental to the operation of MML is the transport, processing, and interpretation of information propagated by molecules through chemical reactions. We begin by reviewing the current approaches that have been developed for MML, before we move towards potential new directions that rely on gene regulatory networks inside biological organisms as well as their population interactions to create neural networks. We then investigate mechanisms for training machine learning structures in biological cells based on calcium signaling and demonstrate their application to build an Analog to Digital Converter (ADC). Lastly, we look at potential future directions as well as challenges that this area could solve.
translated by 谷歌翻译
数字化和远程连接扩大了攻击面,使网络系统更脆弱。由于攻击者变得越来越复杂和资源丰富,仅仅依赖传统网络保护,如入侵检测,防火墙和加密,不足以保护网络系统。网络弹性提供了一种新的安全范式,可以使用弹性机制来补充保护不足。一种网络弹性机制(CRM)适应了已知的或零日威胁和实际威胁和不确定性,并对他们进行战略性地响应,以便在成功攻击时保持网络系统的关键功能。反馈架构在启用CRM的在线感应,推理和致动过程中发挥关键作用。强化学习(RL)是一个重要的工具,对网络弹性的反馈架构构成。它允许CRM提供有限或没有事先知识和攻击者的有限攻击的顺序响应。在这项工作中,我们审查了Cyber​​恢复力的RL的文献,并讨论了对三种主要类型的漏洞,即姿势有关,与信息相关的脆弱性的网络恢复力。我们介绍了三个CRM的应用领域:移动目标防御,防守网络欺骗和辅助人类安全技术。 RL算法也有漏洞。我们解释了RL的三个漏洞和目前的攻击模型,其中攻击者针对环境与代理商之间交换的信息:奖励,国家观察和行动命令。我们展示攻击者可以通过最低攻击努力来欺骗RL代理商学习邪恶的政策。最后,我们讨论了RL为基于RL的CRM的网络安全和恢复力和新兴应用的未来挑战。
translated by 谷歌翻译
我们提出,生命的连续性及其演变来自称为合身生存的互动群体过程。该过程取代了达尔文人的个人斗争和适合生存理论,这是进化的主要机制。在这里,我们提出,自然过程与计算机自动编码功能相关。自动编码是一种机器学习技术,用于提取输入数据基本特征的紧凑表示。通过自动编码降低维度性,建立一个代码,该代码能够基于解码相关数据的各种应用程序。我们确定以下几点:(1)我们通过其物种相互作用代码定义一个物种,该物种由该物种与其外部环境和内部环境的基本核心相互作用组成;核心相互作用由包括分子细胞 - 生物在内的多尺度网络编码。 (2)通过可持续变化的物种相互作用代码进行进化;这些变化的代码既反映和构建物种环境。物种的生存是通过我们称为自然自动编码的内容来计算的:输入相互作用的阵列会产生物种代码,该代码通过解码为持续生态系统相互作用的网络而生存。 DNA只是天然自动编码的一个元素。 (3)自然自动编码和人工自动编码过程明确定义了相似性和差异。天然自动编码的生存为进化机理提供了新的启示,并解释了为什么可居住的生物圈需要多样化的拟合组相互作用。
translated by 谷歌翻译
在本文中,我们介绍了四种突出的恶意软件检测工具的科学评估,以帮助组织提出两个主要问题:基于ML的工具在多大程度上对以前和从未见过的文件进行了准确的分类?是否值得购买网络级恶意软件检测器?为了识别弱点,我们针对各种文件类型的总计3,536个文件(2,554或72 \%恶意,982或28 \%良性)测试了每个工具,包括数百个恶意零日,polyglots和apt-style-style style文件,在多个协议上交付。我们介绍了有关检测时间和准确性的统计结果,请考虑互补分析(一起使用多个工具),并提供了近期成本效益评估程序的两种新颖应用。尽管基于ML的工具在检测零日文件和可执行文件方面更有效,但基于签名的工具仍然是总体上更好的选择。两种基于网络的工具都与任何一种主机工具配对时都可以进行大量(模拟)节省,但两者在HTTP或SMTP以外的协议上都显示出较差的检测率。我们的结果表明,所有四个工具都具有几乎完美的精度但令人震惊的召回率,尤其是在可执行文件和Office文件以外的文件类型上 - 未检测到37%的恶意软件,包括所有Polyglot文件。给出了研究人员的优先事项,并给出了最终用户的外卖。
translated by 谷歌翻译