现代人工智能(AI)启用了入侵检测系统(IDS)是复杂的黑匣子。这意味着安全分析师对IDS模型为何做出特定预测的原因几乎没有解释或澄清。解决此问题的一个潜在解决方案是基于可解释的人工智能(XAI)的当前能力研究和开发可解释的入侵检测系统(X-IDS)。在本文中,我们创建了一个基于自组织的X-IDS系统,能够产生解释性的可视化。我们利用SOM的解释性来创建全球和本地解释。分析师可以使用全局解释来了解特定IDS如何计算预测的一般想法。为单个数据点生成了局部说明,以解释为什么计算某个预测值的原因。此外,使用NSL-KDD和CIC-IDS-2017数据集评估了我们基于SOM的X-IDS在解释生成和传统准确性测试中评估。
translated by 谷歌翻译
人工智能(AI)和机器学习(ML)在网络安全挑战中的应用已在行业和学术界的吸引力,部分原因是对关键系统(例如云基础架构和政府机构)的广泛恶意软件攻击。入侵检测系统(IDS)使用某些形式的AI,由于能够以高预测准确性处理大量数据,因此获得了广泛的采用。这些系统托管在组织网络安全操作中心(CSOC)中,作为一种防御工具,可监视和检测恶意网络流,否则会影响机密性,完整性和可用性(CIA)。 CSOC分析师依靠这些系统来决定检测到的威胁。但是,使用深度学习(DL)技术设计的IDS通常被视为黑匣子模型,并且没有为其预测提供理由。这为CSOC分析师造成了障碍,因为他们无法根据模型的预测改善决策。解决此问题的一种解决方案是设计可解释的ID(X-IDS)。这项调查回顾了可解释的AI(XAI)的最先进的ID,目前的挑战,并讨论了这些挑战如何涉及X-ID的设计。特别是,我们全面讨论了黑匣子和白盒方法。我们还在这些方法之间的性能和产生解释的能力方面提出了权衡。此外,我们提出了一种通用体系结构,该建筑认为人类在循环中,该架构可以用作设计X-ID时的指南。研究建议是从三个关键观点提出的:需要定义ID的解释性,需要为各种利益相关者量身定制的解释以及设计指标来评估解释的需求。
translated by 谷歌翻译
可解释的人工智能(XAI)是提高机器学习(ML)管道透明度的有前途解决方案。我们将开发和利用XAI方法用于防御和进攻性网络安全任务的研究越来越多(但分散的)缩影。我们确定3个网络安全利益相关者,即模型用户,设计师和对手,将XAI用于ML管道中的5个不同目标,即1)启用XAI的决策支持,2)将XAI应用于安全任务,3)3)通过模型验证通过模型验证xai,4)解释验证和鲁棒性,以及5)对解释的进攻使用。我们进一步分类文献W.R.T.目标安全域。我们对文献的分析表明,许多XAI应用程序的设计都几乎没有了解如何将其集成到分析师工作流程中 - 仅在14%的情况下进行了解释评估的用户研究。文献也很少解开各种利益相关者的角色。特别是,在安全文献中将模型设计师的作用最小化。为此,我们提出了一个说明性用例,突显了模型设计师的作用。我们证明了XAI可以帮助模型验证和可能导致错误结论的案例。系统化和用例使我们能够挑战几个假设,并提出可以帮助塑造网络安全XAI未来的开放问题
translated by 谷歌翻译
异常检测领域中的大多数建议仅集中在检测阶段,特别是在最近的深度学习方法上。在提供高度准确的预测的同时,这些模型通常缺乏透明度,充当“黑匣子”。这种批评已经越来越多,即解释在可接受性和可靠性方面被认为非常相关。在本文中,我们通过检查ADMNC(混合数值和分类空间的异常检测)模型来解决此问题,这是一种现有的非常准确的,尽管不透明的异常检测器能够使用数值和分类输入进行操作。这项工作介绍了扩展EADMNC(在混合数值和分类空间上可解释的异常检测),这为原始模型获得的预测提供了解释性。通过Apache Spark Framework,我们保留了原始方法的可伸缩性。 EADMNC利用了先前的ADMNC模型的配方,以提供事前和事后解释性,同时保持原始体系结构的准确性。我们提出了一个事前模型,该模型在全球范围内通过将输入数据分割为均质组,仅使用少数变量来解释输出。我们设计了基于回归树的图形表示,主管可以检查以了解正常数据和异常数据之间的差异。我们的事后解释由基于文本的模板方法组成,该方法在本地提供了支持每个检测的文本参数。我们报告了广泛的现实数据,特别是在网络入侵检测领域的实验结果。使用网络入侵域中的专家知识来评估解释的有用性。
translated by 谷歌翻译
人工智能(AI)模型的黑框性质不允许用户理解和有时信任该模型创建的输出。在AI应用程序中,不仅结果,而且结果的决策路径至关重要,此类Black-Box AI模型还不够。可解释的人工智能(XAI)解决了此问题,并定义了用户可解释的一组AI模型。最近,有几种XAI模型是通过在医疗保健,军事,能源,金融和工业领域等各个应用领域的黑盒模型缺乏可解释性和解释性来解决有关的问题。尽管XAI的概念最近引起了广泛关注,但它与物联网域的集成尚未完全定义。在本文中,我们在物联网域范围内使用XAI模型对最近的研究进行了深入和系统的综述。我们根据其方法和应用领域对研究进行分类。此外,我们旨在专注于具有挑战性的问题和开放问题,并为未来的方向指导开发人员和研究人员进行未来的未来调查。
translated by 谷歌翻译
与此同时,在可解释的人工智能(XAI)的研究领域中,已经开发了各种术语,动机,方法和评估标准。随着XAI方法的数量大大增长,研究人员以及从业者以及从业者需要一种方法:掌握主题的广度,比较方法,并根据特定用例所需的特征选择正确的XAI方法语境。在文献中,可以找到许多不同细节水平和深度水平的XAI方法分类。虽然他们经常具有不同的焦点,但它们也表现出许多重叠点。本文统一了这些努力,并提供了XAI方法的分类,这是关于目前研究中存在的概念的概念。在结构化文献分析和元研究中,我们识别并审查了XAI方法,指标和方法特征的50多个最引用和最新的调查。总结在调查调查中,我们将文章的术语和概念合并为统一的结构化分类。其中的单一概念总计超过50个不同的选择示例方法,我们相应地分类。分类学可以为初学者,研究人员和从业者提供服务作为XAI方法特征和方面的参考和广泛概述。因此,它提供了针对有针对性的,用例导向的基础和上下文敏感的未来研究。
translated by 谷歌翻译
尽管有无数的同伴审查的论文,证明了新颖的人工智能(AI)基于大流行期间的Covid-19挑战的解决方案,但很少有临床影响。人工智能在Covid-19大流行期间的影响因缺乏模型透明度而受到极大的限制。这种系统审查考察了在大流行期间使用可解释的人工智能(Xai)以及如何使用它可以克服现实世界成功的障碍。我们发现,Xai的成功使用可以提高模型性能,灌输信任在最终用户,并提供影响用户决策所需的值。我们将读者介绍给常见的XAI技术,其实用程序以及其应用程序的具体例子。 XAI结果的评估还讨论了最大化AI的临床决策支持系统的价值的重要步骤。我们说明了Xai的古典,现代和潜在的未来趋势,以阐明新颖的XAI技术的演变。最后,我们在最近出版物支持的实验设计过程中提供了建议的清单。潜在解决方案的具体示例也解决了AI解决方案期间的共同挑战。我们希望本次审查可以作为提高未来基于AI的解决方案的临床影响的指导。
translated by 谷歌翻译
过去十年已经看到人工智能(AI)的显着进展,这导致了用于解决各种问题的算法。然而,通过增加模型复杂性并采用缺乏透明度的黑匣子AI模型来满足这种成功。为了响应这种需求,已经提出了说明的AI(Xai)以使AI更透明,从而提高关键结构域中的AI。虽然有几个关于Xai主题的Xai主题的评论,但在Xai中发现了挑战和潜在的研究方向,这些挑战和研究方向被分散。因此,本研究为Xai组织的挑战和未来的研究方向提出了系统的挑战和未来研究方向:(1)基于机器学习生命周期的Xai挑战和研究方向,基于机器的挑战和研究方向阶段:设计,开发和部署。我们认为,我们的META调查通过为XAI地区的未来探索指导提供了XAI文学。
translated by 谷歌翻译
随着全球人口越来越多的人口驱动世界各地的快速城市化,有很大的需要蓄意审议值得生活的未来。特别是,随着现代智能城市拥抱越来越多的数据驱动的人工智能服务,值得记住技术可以促进繁荣,福祉,城市居住能力或社会正义,而是只有当它具有正确的模拟补充时(例如竭尽全力,成熟机构,负责任治理);这些智能城市的最终目标是促进和提高人类福利和社会繁荣。研究人员表明,各种技术商业模式和特征实际上可以有助于极端主义,极化,错误信息和互联网成瘾等社会问题。鉴于这些观察,解决了确保了诸如未来城市技术基岩的安全,安全和可解释性的哲学和道德问题,以为未来城市的技术基岩具有至关重要的。在全球范围内,有能够更加人性化和以人为本的技术。在本文中,我们分析和探索了在人以人为本的应用中成功部署AI的安全,鲁棒性,可解释性和道德(数据和算法)挑战的关键挑战,特别强调这些概念/挑战的融合。我们对这些关键挑战提供了对现有文献的详细审查,并分析了这些挑战中的一个可能导致他人的挑战方式或帮助解决其他挑战。本文还建议了这些域的当前限制,陷阱和未来研究方向,以及如何填补当前的空白并导致更好的解决方案。我们认为,这种严谨的分析将为域名的未来研究提供基准。
translated by 谷歌翻译
人工智能(AI)使机器能够从人类经验中学习,适应新的输入,并执行人类的人类任务。 AI正在迅速发展,从过程自动化到认知增强任务和智能流程/数据分析的方式转换业务方式。然而,人类用户的主要挑战是理解和适当地信任AI算法和方法的结果。在本文中,为了解决这一挑战,我们研究并分析了最近在解释的人工智能(XAI)方法和工具中所做的最新工作。我们介绍了一种新颖的XAI进程,便于生产可解释的模型,同时保持高水平的学习性能。我们提出了一种基于互动的证据方法,以帮助人类用户理解和信任启用AI的算法创建的结果和输出。我们在银行域中采用典型方案进行分析客户交易。我们开发数字仪表板以促进与算法的互动结果,并讨论如何提出的XAI方法如何显着提高数据科学家对理解启用AI的算法结果的置信度。
translated by 谷歌翻译
能够分析和量化人体或行为特征的系统(称为生物识别系统)正在使用和应用变异性增长。由于其从手工制作的功能和传统的机器学习转变为深度学习和自动特征提取,因此生物识别系统的性能增加到了出色的价值。尽管如此,这种快速进步的成本仍然尚不清楚。由于其不透明度,深层神经网络很难理解和分析,因此,由错误动机动机动机的隐藏能力或决定是潜在的风险。研究人员已经开始将注意力集中在理解深度神经网络及其预测的解释上。在本文中,我们根据47篇论文的研究提供了可解释生物识别技术的当前状态,并全面讨论了该领域的发展方向。
translated by 谷歌翻译
Artificial intelligence(AI) systems based on deep neural networks (DNNs) and machine learning (ML) algorithms are increasingly used to solve critical problems in bioinformatics, biomedical informatics, and precision medicine. However, complex DNN or ML models that are unavoidably opaque and perceived as black-box methods, may not be able to explain why and how they make certain decisions. Such black-box models are difficult to comprehend not only for targeted users and decision-makers but also for AI developers. Besides, in sensitive areas like healthcare, explainability and accountability are not only desirable properties of AI but also legal requirements -- especially when AI may have significant impacts on human lives. Explainable artificial intelligence (XAI) is an emerging field that aims to mitigate the opaqueness of black-box models and make it possible to interpret how AI systems make their decisions with transparency. An interpretable ML model can explain how it makes predictions and which factors affect the model's outcomes. The majority of state-of-the-art interpretable ML methods have been developed in a domain-agnostic way and originate from computer vision, automated reasoning, or even statistics. Many of these methods cannot be directly applied to bioinformatics problems, without prior customization, extension, and domain adoption. In this paper, we discuss the importance of explainability with a focus on bioinformatics. We analyse and comprehensively overview of model-specific and model-agnostic interpretable ML methods and tools. Via several case studies covering bioimaging, cancer genomics, and biomedical text mining, we show how bioinformatics research could benefit from XAI methods and how they could help improve decision fairness.
translated by 谷歌翻译
人工智能(AI)是塑造未来的颠覆性技术之一。它在主要智能城市解决方案中的数据驱动决策越来越多,包括运输,教育,医疗保健,公共治理和电力系统。与此同时,它在保护Cyber​​威胁,攻击,损害或未授权访问中保护关键网络基础设施时越来越受欢迎。然而,那些传统的AI技术的重要问题之一(例如,深度学习)是,复杂性和复杂性的快速进展推进,并原始是不可诠释的黑匣子。在很多场合,了解控制和信任系统意外或看似不可预测的输出的决策和偏见是非常具有挑战性的。承认,对决策可解释性的控制丧失成为许多数据驱动自动化应用的重要问题。但它可能会影响系统的安全性和可信度吗?本章对网络安全的机器学习应用进行了全面的研究,以表示需要解释来解决这个问题。在这样做的同时,本章首先探讨了智能城市智能城市安全应用程序的AI技术的黑匣子问题。后来,考虑到新的技术范式,解释说明的人工智能(XAI),本章讨论了从黑盒到白盒的过渡。本章还讨论了关于智能城市应用不同自治系统在应用基于AI的技术的解释性,透明度,可辨能力和解释性的过渡要求。最后,它介绍了一些商业XAI平台,在提出未来的挑战和机遇之前,对传统的AI技术提供解释性。
translated by 谷歌翻译
Explainable AI (XAI) is widely viewed as a sine qua non for ever-expanding AI research. A better understanding of the needs of XAI users, as well as human-centered evaluations of explainable models are both a necessity and a challenge. In this paper, we explore how HCI and AI researchers conduct user studies in XAI applications based on a systematic literature review. After identifying and thoroughly analyzing 85 core papers with human-based XAI evaluations over the past five years, we categorize them along the measured characteristics of explanatory methods, namely trust, understanding, fairness, usability, and human-AI team performance. Our research shows that XAI is spreading more rapidly in certain application domains, such as recommender systems than in others, but that user evaluations are still rather sparse and incorporate hardly any insights from cognitive or social sciences. Based on a comprehensive discussion of best practices, i.e., common models, design choices, and measures in user studies, we propose practical guidelines on designing and conducting user studies for XAI researchers and practitioners. Lastly, this survey also highlights several open research directions, particularly linking psychological science and human-centered XAI.
translated by 谷歌翻译
Machine learning (ML) on graph-structured data has recently received deepened interest in the context of intrusion detection in the cybersecurity domain. Due to the increasing amounts of data generated by monitoring tools as well as more and more sophisticated attacks, these ML methods are gaining traction. Knowledge graphs and their corresponding learning techniques such as Graph Neural Networks (GNNs) with their ability to seamlessly integrate data from multiple domains using human-understandable vocabularies, are finding application in the cybersecurity domain. However, similar to other connectionist models, GNNs are lacking transparency in their decision making. This is especially important as there tend to be a high number of false positive alerts in the cybersecurity domain, such that triage needs to be done by domain experts, requiring a lot of man power. Therefore, we are addressing Explainable AI (XAI) for GNNs to enhance trust management by exploring combining symbolic and sub-symbolic methods in the area of cybersecurity that incorporate domain knowledge. We experimented with this approach by generating explanations in an industrial demonstrator system. The proposed method is shown to produce intuitive explanations for alerts for a diverse range of scenarios. Not only do the explanations provide deeper insights into the alerts, but they also lead to a reduction of false positive alerts by 66% and by 93% when including the fidelity metric.
translated by 谷歌翻译
Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.
translated by 谷歌翻译
横向移动是指威胁参与者最初访问网络的方法,然后逐步通过上述网络收集有关资产的关键数据,直到达到其攻击的最终目标。随着企业网络的复杂性和相互联系的性质的增加,横向移动侵入变得更加复杂,并且需要同样复杂的检测机制,以便在企业量表下实时实时地进行此类威胁。在本文中,作者提出了一种使用用户行为分析和机器学习的新颖,轻巧的方法,用于横向运动检测。具体而言,本文介绍了一种用于网络域特异性特征工程的新方法,该方法可以以每个用户为基础识别横向运动行为。此外,工程功能还被用于开发两个监督的机器学习模型,用于横向运动识别,这些模型在文献中显然超过了先前在文献中看到的模型,同时在具有高级失衡的数据集上保持了稳健的性能。本文介绍的模型和方法也已与安全操作员合作设计,以相关和可解释,以最大程度地发挥影响力并最大程度地减少作为网络威胁检测工具包的价值。本文的基本目标是为近实时的横向运动检测提供一种计算高效的,特定于域的方法,该检测对企业规模的数据量和类别不平衡是可解释且健壮的。
translated by 谷歌翻译
如今,人工智能(AI)已成为临床和远程医疗保健应用程序的基本组成部分,但是最佳性能的AI系统通常太复杂了,无法自我解释。可解释的AI(XAI)技术被定义为揭示系统的预测和决策背后的推理,并且在处理敏感和个人健康数据时,它们变得更加至关重要。值得注意的是,XAI并未在不同的研究领域和数据类型中引起相同的关注,尤其是在医疗保健领域。特别是,许多临床和远程健康应用程序分别基于表格和时间序列数据,而XAI并未在这些数据类型上进行分析,而计算机视觉和自然语言处理(NLP)是参考应用程序。为了提供最适合医疗领域表格和时间序列数据的XAI方法的概述,本文提供了过去5年中文献的审查,说明了生成的解释的类型以及为评估其相关性所提供的努力和质量。具体而言,我们确定临床验证,一致性评估,客观和标准化质量评估以及以人为本的质量评估作为确保最终用户有效解释的关键特征。最后,我们强调了该领域的主要研究挑战以及现有XAI方法的局限性。
translated by 谷歌翻译
检测数据集中的潜在结构是执行数据集分析的重要步骤。然而,用于子类发现的现有最先进的技术是有限的:它们仅限于检测非常少量的异常值,或者它们缺乏处理诸如图像或音频的复杂数据的统计功率。本文提出了解决该子类发现问题的解决方案:通过利用实例说明方法,可以扩展现有分类器以通过分类器的内部决策的差异来检测潜在类。这不仅使用简单的分类技术,还可以使用深度神经网络,允许一种强大而灵活的方法来检测数据集中的潜在结构。有效地,这代表了数据集进入分类器的“解释空间”的投影,并且初步结果表明,即使在处理有限的情况下,该技术也越突出了用于检测潜在类的基线。本文还包含用于自动分析分类器的管道,以及用于交互式探索该技术的结果的Web应用程序。
translated by 谷歌翻译
可解释的人工智能和可解释的机器学习是重要性越来越重要的研究领域。然而,潜在的概念仍然难以捉摸,并且缺乏普遍商定的定义。虽然社会科学最近的灵感已经重新分为人类受助人的需求和期望的工作,但该领域仍然错过了具体的概念化。通过审查人类解释性的哲学和社会基础,我们采取措施来解决这一挑战,然后我们转化为技术领域。特别是,我们仔细审查了算法黑匣子的概念,并通过解释过程确定的理解频谱并扩展了背景知识。这种方法允许我们将可解释性(逻辑)推理定义为在某些背景知识下解释的透明洞察(进入黑匣子)的解释 - 这是一个从事在Admoleis中理解的过程。然后,我们采用这种概念化来重新审视透明度和预测权力之间的争议权差异,以及对安特 - 人穴和后宫后解释者的影响,以及可解释性发挥的公平和问责制。我们还讨论机器学习工作流程的组件,可能需要可解释性,从以人为本的可解释性建立一系列思想,重点介绍声明,对比陈述和解释过程。我们的讨论调整并补充目前的研究,以帮助更好地导航开放问题 - 而不是试图解决任何个人问题 - 从而为实现的地面讨论和解释的人工智能和可解释的机器学习的未来进展奠定了坚实的基础。我们结束了我们的研究结果,重新审视了实现所需的算法透明度水平所需的人以人为本的解释过程。
translated by 谷歌翻译