在本文中,我们提出了一种用于多视图360 \级\:图像的密集深度估计流水线。所提出的管道利用了一个球形相机模型,可以在360 \ deption \:图像中补偿径向失真。本文的主要贡献是通过引入翻译缩放方案来扩展球形相机模型以多视图。此外,我们通过设定虚拟深度并最小化光子重新注入误差来提出有效的密集深度估计方法。我们使用自然场景的图像以及合成的数据集来验证所提出的管道的性能,以进行量化评估。实验结果验证了所提出的管道与当前最先进的密集深度估计方法相比提高了估计精度。
translated by 谷歌翻译
基于图像的3D重建是计算机视觉中最重要的任务之一,在过去的几十年中提出了许多解决方案。目的是从图像直接提取场景对象的几何形状。然后可以将它们用于广泛的应用程序,例如电影,游戏,虚拟现实等。最近,已经提出了深度学习技术来解决这个问题。他们依靠对大量数据进行培训,以学会通过深层卷积神经网络在图像之间关联特征,并已被证明超过了传统的程序技术。在本文中,我们通过合并4D相关量来改进[11]的最新两视频结构(SFM)方法,以进行更准确的特征匹配和重建。此外,我们将其扩展到一般的多视图案例,并在复杂的基准数据集DTU [4]上对其进行评估。定量评估和与最先进的多视图3D重建方法的比较证明了其在重建的准确性方面的优势。
translated by 谷歌翻译
使用FASS-MVS,我们提出了一种具有表面感知半全局匹配的快速多视图立体声的方法,其允许从UAV捕获的单眼航空视频数据中快速深度和正常地图估计。反过来,由FASS-MVS估计的数据促进在线3D映射,这意味着在获取或接收到图像数据时立即和递增地生成场景的3D地图。 FASS-MVS由分层处理方案组成,其中深度和正常数据以及相应的置信度分数以粗略的方式估计,允许有效地处理由倾斜图像所固有的大型场景深度低无人机。实际深度估计采用用于致密多图像匹配的平面扫描算法,以产生深度假设,通过表面感知半全局优化来提取实际深度图,从而减少了SGM的正平行偏压。给定估计的深度图,然后通过将深度图映射到点云中并计算狭窄的本地邻域内的普通向量来计算像素 - 方面正常信息。在彻底的定量和消融研究中,我们表明,由FASS-MV计算的3D信息的精度接近离线多视图立体声的最先进方法,误差甚至没有一个幅度而不是科麦。然而,同时,FASS-MVS的平均运行时间估计单个深度和正常地图的距离小于ColMAP的14%,允许在1-中执行全高清图像的在线和增量处理2 Hz。
translated by 谷歌翻译
当前的极化3D重建方法,包括具有偏振文献的良好形状的方法,均在正交投影假设下开发。但是,在较大的视野中,此假设不存在,并且可能导致对此假设的方法发生重大的重建错误。为了解决此问题,我们介绍适用于透视摄像机的透视相位角(PPA)模型。与拼字法模型相比,提出的PPA模型准确地描述了在透视投影下极化相位角与表面正常之间的关系。此外,PPA模型使得仅从一个单视相位映射估算表面正态,并且不遭受所谓的{\ pi} - ambiguity问题。实际数据上的实验表明,PPA模型对于具有透视摄像机的表面正常估计比拼字法模型更准确。
translated by 谷歌翻译
现代计算机视觉已超越了互联网照片集的领域,并进入了物理世界,通过非结构化的环境引导配备摄像头的机器人和自动驾驶汽车。为了使这些体现的代理与现实世界对象相互作用,相机越来越多地用作深度传感器,重建了各种下游推理任务的环境。机器学习辅助的深度感知或深度估计会预测图像中每个像素的距离。尽管已经在深入估算中取得了令人印象深刻的进步,但仍然存在重大挑战:(1)地面真相深度标签很难大规模收集,(2)通常认为相机信息是已知的,但通常是不可靠的,并且(3)限制性摄像机假设很常见,即使在实践中使用了各种各样的相机类型和镜头。在本论文中,我们专注于放松这些假设,并描述将相机变成真正通用深度传感器的最终目标的贡献。
translated by 谷歌翻译
由于球形摄像机的兴起,单眼360深度估计成为许多应用(例如自主系统)的重要技术。因此,提出了针对单眼360深度估计的最新框架,例如Bifuse中的双预测融合。为了训练这样的框架,需要大量全景以及激光传感器捕获的相应深度地面真相,这极大地增加了数据收集成本。此外,由于这样的数据收集过程是耗时的,因此将这些方法扩展到不同场景的可扩展性成为一个挑战。为此,从360个视频中进行单眼深度估计网络的自我培训是减轻此问题的一种方法。但是,没有现有的框架将双投射融合融合到自我训练方案中,这极大地限制了自我监督的性能,因为Bi-Prodoction Fusion可以利用来自不同投影类型的信息。在本文中,我们建议Bifuse ++探索双投影融合和自我训练场景的组合。具体来说,我们提出了一个新的融合模块和对比度感知的光度损失,以提高Bifuse的性能并提高对现实世界视频的自我训练的稳定性。我们在基准数据集上进行了监督和自我监督的实验,并实现最先进的性能。
translated by 谷歌翻译
在本文中,我们描述了一种使用带有运动视差的单个球形视频中的两个相邻帧捕获几乎完全球形(360度)深度信息的方法。在使用两个球形摄像头说明了球形深度信息检索之后,我们通过使用稳定的第一人称视频录像来证明单眼球形立体声。实验表明,在整个球体的97%上以实体角度检索了深度信息。以30 km/h的速度,我们能够估计距相机30 m以上物体的深度。我们还使用获得的深度数据重建了3D结构(点云),并确认可以清楚地观察到结构。我们可以将此方法应用于周围环境的3D结构检索,例如1)预言,胶片的位置狩猎/计划,2)真实场景/计算机图形合成和3)运动捕获。由于其简单性,该方法可以应用于各种视频。由于没有其他前条件,除了要进行360个带有运动视差的视频,因此我们可以使用任何360个视频,包括Internet上的视频来重建周围环境。摄像机可以轻巧,以安装在无人机上。我们还展示了此类应用。
translated by 谷歌翻译
这些年来,展示技术已经发展。开发实用的HDR捕获,处理和显示解决方案以将3D技术提升到一个新的水平至关重要。多曝光立体声图像序列的深度估计是开发成本效益3D HDR视频内容的重要任务。在本文中,我们开发了一种新颖的深度体系结构,以进行多曝光立体声深度估计。拟议的建筑有两个新颖的组成部分。首先,对传统立体声深度估计中使用的立体声匹配技术进行了修改。对于我们体系结构的立体深度估计部分,部署了单一到stereo转移学习方法。拟议的配方规避了成本量构造的要求,该要求由基于重新编码的单码编码器CNN取代,具有不同的重量以进行功能融合。基于有效网络的块用于学习差异。其次,我们使用强大的视差特征融合方法组合了从不同暴露水平上从立体声图像获得的差异图。使用针对不同质量度量计算的重量图合并在不同暴露下获得的差异图。获得的最终预测差异图更强大,并保留保留深度不连续性的最佳功能。提出的CNN具有使用标准动态范围立体声数据或具有多曝光低动态范围立体序列的训练的灵活性。在性能方面,所提出的模型超过了最新的单眼和立体声深度估计方法,无论是定量还是质量地,在具有挑战性的场景流以及暴露的Middlebury立体声数据集上。该体系结构在复杂的自然场景中表现出色,证明了其对不同3D HDR应用的有用性。
translated by 谷歌翻译
Photometric differences are widely used as supervision signals to train neural networks for estimating depth and camera pose from unlabeled monocular videos. However, this approach is detrimental for model optimization because occlusions and moving objects in a scene violate the underlying static scenario assumption. In addition, pixels in textureless regions or less discriminative pixels hinder model training. To solve these problems, in this paper, we deal with moving objects and occlusions utilizing the difference of the flow fields and depth structure generated by affine transformation and view synthesis, respectively. Secondly, we mitigate the effect of textureless regions on model optimization by measuring differences between features with more semantic and contextual information without adding networks. In addition, although the bidirectionality component is used in each sub-objective function, a pair of images are reasoned about only once, which helps reduce overhead. Extensive experiments and visual analysis demonstrate the effectiveness of the proposed method, which outperform existing state-of-the-art self-supervised methods under the same conditions and without introducing additional auxiliary information.
translated by 谷歌翻译
现代的3D计算机视觉利用学习来增强几何推理,将图像数据映射到经典结构,例如成本量或外观限制,以改善匹配。这些体系结构根据特定问题进行了专门化,因此需要进行大量任务的调整,通常会导致域的泛化性能差。最近,通才变压器架构通过编码几何学先验作为输入而不是执行约束,在诸如光流和深度估计等任务中取得了令人印象深刻的结果。在本文中,我们扩展了这一想法,并建议学习一个隐式,多视图一致的场景表示,并在增加视图多样性之前引入了一系列3D数据增强技术作为几何感应。我们还表明,引入视图合成作为辅助任务进一步改善了深度估计。我们的深度磁场网络(定义)实现了最新的目的,可以实现立体声和视频深度估计,而无需明确的几何约束,并通过广泛的边距改善了零局部域的概括。
translated by 谷歌翻译
360 {\ DEG}相机可以在单次拍摄中捕获完整的环境,这使得在许多计算机视觉任务中制作360 {\ DEG}图像诱人。然而,单眼深度估计仍然是360 {\ DEG}数据的挑战,特别是对于2K(2048 $ \倍1024美元)的高分辨率,这对于新颖的综合和虚拟现实应用很重要。基于CNN的基于CNN的方法不支持由于GPU存储器有限而导致的这种高分辨率。在这项工作中,我们提出了一种灵活的框架,用于使用切线图像的高分辨率360 {\ DEG}图像的单眼深度估计框架。我们将360 {\ DEG}输入图像投影到一组切线,产生透视图,这适用于最新,最准确的最先进的透视单眼深度估计器。我们使用可变形的多尺度对准再次重新组合各个深度估计,然后通过梯度域混合来提高视差估计的一致性。结果是具有高细节水平的密集,高分辨率360 {\ DEG}深度图,也适用于现有方法不支持的户外场景。
translated by 谷歌翻译
准确估计深度信息的能力对于许多自主应用来识别包围环境并预测重要对象的深度至关重要。最近使用的技术之一是单眼深度估计,其中深度图从单个图像推断出深度图。本文提高了自我监督的深度学习技术,以进行准确的广义单眼深度估计。主要思想是训练深层模型要考虑不同帧的序列,每个帧都是地理标记的位置信息。这使得模型能够增强给定区域语义的深度估计。我们展示了我们模型改善深度估计结果的有效性。该模型在现实环境中受过培训,结果显示在将位置数据添加到模型训练阶段之后的深度图中的改进。
translated by 谷歌翻译
作为许多自主驾驶和机器人活动的基本组成部分,如自我运动估计,障碍避免和场景理解,单眼深度估计(MDE)引起了计算机视觉和机器人社区的极大关注。在过去的几十年中,已经开发了大量方法。然而,据我们所知,对MDE没有全面调查。本文旨在通过审查1970年至2021年之间发布的197个相关条款来弥补这一差距。特别是,我们为涵盖各种方法的MDE提供了全面的调查,介绍了流行的绩效评估指标并汇总公开的数据集。我们还总结了一些代表方法的可用开源实现,并比较了他们的表演。此外,我们在一些重要的机器人任务中审查了MDE的应用。最后,我们通过展示一些有希望的未来研究方向来结束本文。预计本调查有助于读者浏览该研究领域。
translated by 谷歌翻译
我们提出了一种新型算法,用于单眼深度估计,将度量深度图分解为归一化的深度图和尺度特征。所提出的网络由共享编码器和三个解码器组成,称为G-NET,N-NET和M-NET,它们分别估算了梯度图,归一化的深度图和度量深度图。M-NET学习使用G-NET和N-NET提取的相对深度特征更准确地估算度量深度。所提出的算法具有一个优点,即它可以使用无度量深度标签的数据集来提高度量深度估计的性能。各种数据集的实验结果表明,所提出的算法不仅为最先进的算法提供竞争性能,而且即使只有少量的度量深度数据可用于培训,也会产生可接受的结果。
translated by 谷歌翻译
全景图像可以同时展示周围环境的完整信息,并且在虚拟旅游,游戏,机器人技术等方面具有许多优势。但是,全景深度估计的进度无法完全解决由常用的投射方法引起的失真和不连续性问题。本文提出了SphereDepth,这是一种新型的全景深度估计方法,该方法可直接预测球形网格的深度而无需投影预处理。核心思想是建立全景图像与球形网格之间的关系,然后使用深层神经网络在球形域上提取特征以预测深度。为了解决高分辨率全景数据带来的效率挑战,我们介绍了两个超参数,以平衡推理速度和准确性。在三个公共全景数据集中验证,SphereDepth通过全景深度估算的最新方法实现了可比的结果。从球形域设置中受益,球形部可以产生高质量的点云,并显着缓解失真和不连续性问题。
translated by 谷歌翻译
本文介绍了一种新颖的体系结构,用于同时估算高度准确的光流和刚性场景转换,以实现困难的场景,在这种情况下,亮度假设因强烈的阴影变化而违反了亮度假设。如果是旋转物体或移动的光源(例如在黑暗中驾驶汽车遇到的光源),场景的外观通常从一个视图到下一个视图都发生了很大变化。不幸的是,用于计算光学流或姿势的标准方法是基于这样的期望,即场景中特征在视图之间保持恒定。在调查的情况下,这些方法可能经常失败。提出的方法通过组合图像,顶点和正常数据来融合纹理和几何信息,以计算照明不变的光流。通过使用粗到最新的策略,可以学习全球锚定的光流,从而减少了基于伪造的伪相应的影响。基于学习的光学流,提出了第二个体系结构,该体系结构可预测扭曲的顶点和正常地图的稳健刚性变换。特别注意具有强烈旋转的情况,这通常会导致这种阴影变化。因此,提出了一个三步程序,该程序可以利用正态和顶点之间的相关性。该方法已在新创建的数据集上进行了评估,该数据集包含具有强烈旋转和阴影效果的合成数据和真实数据。该数据代表了3D重建中的典型用例,其中该对象通常在部分重建之间以很大的步骤旋转。此外,我们将该方法应用于众所周知的Kitti Odometry数据集。即使由于实现了Brighness的假设,这不是该方法的典型用例,因此,还建立了对标准情况和与其他方法的关系的适用性。
translated by 谷歌翻译
从2D前看声纳中检索声学图像中缺少的维度信息是水下机器人技术领域的一个众所周知的问题。有一些尝试从单个图像中检索3D信息的作品,该信息允许机器人通过飞行运动生成3D地图。但是,由于独特的图像配方原理,估计来自单个图像的3D信息面临严重的歧义问题。多视图立体声的经典方法可以避免歧义问题,但可能需要大量的观点来生成准确的模型。在这项工作中,我们提出了一种基于学习的新型多视角立体方法来估计3D信息。为了更好地利用来自多个帧的信息,提出了一种高程平面扫平方法来生成深度 - 齐路的成本量。正则化后的体积可以视为目标的概率体积表示。我们使用伪前深度来代表3D信息,而不是在高程角度上进行回归,而是可以避免声学成像中的2d-3d问题。只有两个或三个图像可以生成高准确的结果。生成合成数据集以模拟各种水下目标。我们还在大型水箱中构建了第一个具有准确地面真相的真实数据集。实验结果证明了与其他最新方法相比,我们方法的优势。
translated by 谷歌翻译
本文提出了一种新型电镀摄像机的校准算法,尤其是多焦距配置,其中使用了几种类型的微透镜,仅使用原始图像。电流校准方法依赖于简化投影模型,使用重建图像的功能,或者需要每种类型的微透镜进行分离的校准。在多聚焦配置中,根据微透镜焦距,场景的相同部分将展示不同量的模糊。通常,使用具有最小模糊量的微图像。为了利用所有可用的数据,我们建议在新推出的模糊的模糊(BAP)功能的帮助下,在新的相机模型中明确地模拟Defocus模糊。首先,它用于检索初始相机参数的预校准步骤,而第二步骤,以表达在我们的单个优化过程中最小化的新成本函数。第三,利用它来校准微图像之间的相对模糊。它将几何模糊,即模糊圈链接到物理模糊,即点传播函数。最后,我们使用产生的模糊概况来表征相机的景深。实际数据对受控环境的定量评估展示了我们校准的有效性。
translated by 谷歌翻译
基于3D点云表示的视图合成方法已证明有效性。但是,现有的方法通常仅从单个源视图中综合新视图,并且概括它们以处理多个源视图以追求更高的重建质量是不平凡的。在本文中,我们提出了一种新的基于深度学习的视图综合范式,该范式从不同的源视图中学习了统一的3D点云。具体而言,我们首先通过根据其深度图将源视图投影到3D空间来构建子点云。然后,我们通过在子点云联合定义的本地社区中自适应地融合点来学习统一的3D点云。此外,我们还提出了一个3D几何引导的图像恢复模块,以填充孔并恢复渲染的新型视图的高频细节。三个基准数据集的实验结果表明,我们的方法在数量和视觉上都在很大程度上优于最先进的综合方法。
translated by 谷歌翻译
Training a Neural Radiance Field (NeRF) without pre-computed camera poses is challenging. Recent advances in this direction demonstrate the possibility of jointly optimising a NeRF and camera poses in forward-facing scenes. However, these methods still face difficulties during dramatic camera movement. We tackle this challenging problem by incorporating undistorted monocular depth priors. These priors are generated by correcting scale and shift parameters during training, with which we are then able to constrain the relative poses between consecutive frames. This constraint is achieved using our proposed novel loss functions. Experiments on real-world indoor and outdoor scenes show that our method can handle challenging camera trajectories and outperforms existing methods in terms of novel view rendering quality and pose estimation accuracy.
translated by 谷歌翻译