为了解决逆问题,已经开发了插件(PNP)方法,可以用呼叫特定于应用程序的DeNoiser在凸优化算法中替换近端步骤,该算法通常使用深神经网络(DNN)实现。尽管这种方法已经成功,但可以改进它们。例如,Denoiser通常经过设计/训练以消除白色高斯噪声,但是PNP算法中的DINOISER输入误差通常远非白色或高斯。近似消息传递(AMP)方法提供了白色和高斯DEOISER输入误差,但仅当正向操作员是一个大的随机矩阵时。在这项工作中,对于基于傅立叶的远期运营商,我们提出了一种基于普遍期望一致性(GEC)近似的PNP算法 - AMP的紧密表弟 - 在每次迭代时提供可预测的错误统计信息,以及新的DNN利用这些统计数据的Denoiser。我们将方法应用于磁共振成像(MRI)图像恢复,并证明其优于现有的PNP和AMP方法。
translated by 谷歌翻译
Image reconstruction using deep learning algorithms offers improved reconstruction quality and lower reconstruction time than classical compressed sensing and model-based algorithms. Unfortunately, clean and fully sampled ground-truth data to train the deep networks is often unavailable in several applications, restricting the applicability of the above methods. We introduce a novel metric termed the ENsemble Stein's Unbiased Risk Estimate (ENSURE) framework, which can be used to train deep image reconstruction algorithms without fully sampled and noise-free images. The proposed framework is the generalization of the classical SURE and GSURE formulation to the setting where the images are sampled by different measurement operators, chosen randomly from a set. We evaluate the expectation of the GSURE loss functions over the sampling patterns to obtain the ENSURE loss function. We show that this loss is an unbiased estimate for the true mean-square error, which offers a better alternative to GSURE, which only offers an unbiased estimate for the projected error. Our experiments show that the networks trained with this loss function can offer reconstructions comparable to the supervised setting. While we demonstrate this framework in the context of MR image recovery, the ENSURE framework is generally applicable to arbitrary inverse problems.
translated by 谷歌翻译
新磁共振(MR)成像方式可以量化血流动力学,但需要长时间的采集时间,妨碍其广泛用于早期诊断心血管疾病。为了减少采集​​时间,常规使用来自未采样测量的重建方法,使得利用旨在提高图像可压缩性的表示。重建的解剖和血液动力学图像可能存在视觉伪影。尽管这些工件中的一些基本上是重建错误,因此欠采样的后果,其他人可能是由于测量噪声或采样频率的随机选择。另有说明,重建的图像变为随机变量,并且其偏差和其协方差都可以导致视觉伪影;后者会导致可能误解的空间相关性以用于视觉信息。虽然前者的性质已经在文献中已经研究过,但后者尚未得到关注。在这项研究中,我们研究了从重建过程产生的随机扰动的理论特性,并对模拟和主动脉瘤进行了许多数值实验。我们的结果表明,当基于$ \ ell_1 $ -norm最小化的高斯欠采样模式与恢复算法组合时,相关长度保持限制为2到三个像素。然而,对于其他欠采样模式,相关长度可以显着增加,较高的欠采样因子(即8倍或16倍压缩)和不同的重建方法。
translated by 谷歌翻译
CSGM框架(Bora-Jalal-Price-Dimakis'17)表明,深度生成前沿可能是解决逆问题的强大工具。但是,迄今为止,此框架仅在某些数据集(例如,人称和MNIST数字)上经验成功,并且已知在分布外样品上表现不佳。本文介绍了CSGM框架在临床MRI数据上的第一次成功应用。我们在FastMri DataSet上培训了大脑扫描之前的生成,并显示通过Langevin Dynamics的后验采样实现了高质量的重建。此外,我们的实验和理论表明,后部采样是对地面定语分布和测量过程的变化的强大。我们的代码和型号可用于:\ URL {https://github.com/utcsilab/csgm-mri-langevin}。
translated by 谷歌翻译
我们在凸优化和深度学习的界面上引入了一类新的迭代图像重建算法,以启发凸出和深度学习。该方法包括通过训练深神网络(DNN)作为Denoiser学习先前的图像模型,并将其替换为优化算法的手工近端正则操作员。拟议的airi(``````````````''''')框架,用于成像复杂的强度结构,并从可见性数据中扩散和微弱的发射,继承了优化的鲁棒性和解释性,以及网络的学习能力和速度。我们的方法取决于三个步骤。首先,我们从光强度图像设计了一个低动态范围训练数据库。其次,我们以从数据的信噪比推断出的噪声水平来训练DNN Denoiser。我们使用训练损失提高了术语,可确保算法收敛,并通过指示进行即时数据库动态范围增强。第三,我们将学习的DeNoiser插入前向后的优化算法中,从而产生了一个简单的迭代结构,该结构与梯度下降的数据输入步骤交替出现Denoising步骤。我们已经验证了SARA家族的清洁,优化算法的AIRI,并经过DNN训练,可以直接从可见性数据中重建图像。仿真结果表明,AIRI与SARA及其基于前卫的版本USARA具有竞争力,同时提供了显着的加速。干净保持更快,但质量较低。端到端DNN提供了进一步的加速,但质量远低于AIRI。
translated by 谷歌翻译
Existing deep-learning based tomographic image reconstruction methods do not provide accurate estimates of reconstruction uncertainty, hindering their real-world deployment. This paper develops a method, termed as the linearised deep image prior (DIP), to estimate the uncertainty associated with reconstructions produced by the DIP with total variation regularisation (TV). Specifically, we endow the DIP with conjugate Gaussian-linear model type error-bars computed from a local linearisation of the neural network around its optimised parameters. To preserve conjugacy, we approximate the TV regulariser with a Gaussian surrogate. This approach provides pixel-wise uncertainty estimates and a marginal likelihood objective for hyperparameter optimisation. We demonstrate the method on synthetic data and real-measured high-resolution 2D $\mu$CT data, and show that it provides superior calibration of uncertainty estimates relative to previous probabilistic formulations of the DIP. Our code is available at https://github.com/educating-dip/bayes_dip.
translated by 谷歌翻译
Computational imaging has been revolutionized by compressed sensing algorithms, which offer guaranteed uniqueness, convergence, and stability properties. In recent years, model-based deep learning methods that combine imaging physics with learned regularization priors have been emerging as more powerful alternatives for image recovery. The main focus of this paper is to introduce a memory efficient model-based algorithm with similar theoretical guarantees as CS methods. The proposed iterative algorithm alternates between a gradient descent involving the score function and a conjugate gradient algorithm to encourage data consistency. The score function is modeled as a monotone convolutional neural network. Our analysis shows that the monotone constraint is necessary and sufficient to enforce the uniqueness of the fixed point in arbitrary inverse problems. In addition, it also guarantees the convergence to a fixed point, which is robust to input perturbations. Current algorithms including RED and MoDL are special cases of the proposed algorithm; the proposed theoretical tools enable the optimization of the framework for the deep equilibrium setting. The proposed deep equilibrium formulation is significantly more memory efficient than unrolled methods, which allows us to apply it to 3D or 2D+time problems that current unrolled algorithms cannot handle.
translated by 谷歌翻译
通过最近基于深度学习的方法显示出令人鼓舞的结果,可以消除图像中的噪音,在有监督的学习设置中报道了最佳的降级性能,该设置需要大量的配对嘈杂图像和训练的基础真相。强大的数据需求可以通过无监督的学习技术来减轻,但是,对于高质量的解决方案,图像或噪声方差的准确建模仍然至关重要。对于未知的噪声分布而言,学习问题不足。本文研究了单个联合学习框架中图像降解和噪声方差估计的任务。为了解决问题的不良性,我们提出了深度差异先验(DVP),该差异指出,适当学到的DeNoiser在噪声变化方面的变化满足了一些平滑度的特性,这是良好DeNoiser的关键标准。建立在DVP的基础上,这是一个无监督的深度学习框架,同时学习了Denoiser并估算了噪声差异。我们的方法不需要任何干净的训练图像或噪声估计的外部步骤,而是仅使用一组嘈杂的图像近似于最小平方误差Denoisiser。在一个框架中考虑了两个基本任务,我们允许它们相互优化。实验结果表明,具有与监督的学习和准确的噪声方差估计值相当的质量。
translated by 谷歌翻译
近年来,深度学习在图像重建方面取得了显着的经验成功。这已经促进了对关键用例中数据驱动方法的正确性和可靠性的精确表征的持续追求,例如在医学成像中。尽管基于深度学习的方法具有出色的性能和功效,但对其稳定性或缺乏稳定性的关注以及严重的实际含义。近年来,已经取得了重大进展,以揭示数据驱动的图像恢复方法的内部运作,从而挑战了其广泛认为的黑盒本质。在本文中,我们将为数据驱动的图像重建指定相关的融合概念,该概念将构成具有数学上严格重建保证的学习方法调查的基础。强调的一个例子是ICNN的作用,提供了将深度学习的力量与经典凸正则化理论相结合的可能性,用于设计被证明是融合的方法。这篇调查文章旨在通过提供对数据驱动的图像重建方法以及从业人员的理解,旨在通过提供可访问的融合概念的描述,并通过将一些现有的经验实践放在可靠的数学上,来推进我们对数据驱动图像重建方法的理解以及从业人员的了解。基础。
translated by 谷歌翻译
通过结合使用卷积神经网(CNN)指定的物理测量模型和学习的图像验证者,对基于模型的架构(DMBA)的兴趣越来越大。例如,用于系统设计DMBA的著名框架包括插件培训(PNP),深度展开(DU)和深度平衡模型(DEQ)。尽管已广泛研究了DMBA的经验性能和理论特性,但当确切地知道所需的图像之前,该地区的现有工作主要集中在其性能上。这项工作通过在不匹配的CNN先验下向DMBA提供新的理论和数值见解来解决先前工作的差距。当训练和测试数据之间存在分布变化时,自然会出现不匹配的先验,例如,由于测试图像来自与用于训练CNN先验的图像不同的分布。当CNN事先用于推理是一些所需的统计估计器(MAP或MMSE)的近似值时,它们也会出现。我们的理论分析在一组明确指定的假设下,由于不匹配的CNN先验,在解决方案上提供了明显的误差界限。我们的数值结果比较了在现实分布变化和近似统计估计器下DMBA的经验性能。
translated by 谷歌翻译
我们提出了一个基于一般学习的框架,用于解决非平滑和非凸图像重建问题。我们将正则函数建模为$ l_ {2,1} $ norm的组成,并将平滑但非convex功能映射参数化为深卷积神经网络。我们通过利用Nesterov的平滑技术和残留学习的概念来开发一种可证明的趋同的下降型算法来解决非平滑非概念最小化问题,并学习网络参数,以使算法的输出与培训数据中的参考匹配。我们的方法用途广泛,因为人们可以将各种现代网络结构用于正规化,而所得网络继承了算法的保证收敛性。我们还表明,所提出的网络是参数有效的,其性能与实践中各种图像重建问题中的最新方法相比有利。
translated by 谷歌翻译
我们提出了一种监督学习稀疏促进正规化器的方法,以降低信号和图像。促进稀疏性正则化是解决现代信号重建问题的关键要素。但是,这些正规化器的基础操作员通常是通过手动设计的,要么以无监督的方式从数据中学到。监督学习(主要是卷积神经网络)在解决图像重建问题方面的最新成功表明,这可能是设计正规化器的富有成果的方法。为此,我们建议使用带有参数,稀疏的正规器的变异公式来贬低信号,其中学会了正常器的参数,以最大程度地减少在地面真实图像和测量对的训练集中重建的平均平方误差。培训涉及解决一个具有挑战性的双层优化问题;我们使用denoising问题的封闭形式解决方案得出了训练损失梯度的表达,并提供了随附的梯度下降算法以最大程度地减少其。我们使用结构化1D信号和自然图像的实验表明,所提出的方法可以学习一个超过众所周知的正规化器(总变化,DCT-SPARSITY和无监督的字典学习)的操作员和用于DeNoisis的协作过滤。尽管我们提出的方法是特定于denoising的,但我们认为它可以适应线性测量模型的较大类反问题,使其在广泛的信号重建设置中适用。
translated by 谷歌翻译
近年来,在诸如denoing,压缩感应,介入和超分辨率等反问题中使用深度学习方法的使用取得了重大进展。尽管这种作品主要是由实践算法和实验驱动的,但它也引起了各种有趣的理论问题。在本文中,我们调查了这一作品中一些突出的理论发展,尤其是生成先验,未经训练的神经网络先验和展开算法。除了总结这些主题中的现有结果外,我们还强调了一些持续的挑战和开放问题。
translated by 谷歌翻译
Deconvolution is a widely used strategy to mitigate the blurring and noisy degradation of hyperspectral images~(HSI) generated by the acquisition devices. This issue is usually addressed by solving an ill-posed inverse problem. While investigating proper image priors can enhance the deconvolution performance, it is not trivial to handcraft a powerful regularizer and to set the regularization parameters. To address these issues, in this paper we introduce a tuning-free Plug-and-Play (PnP) algorithm for HSI deconvolution. Specifically, we use the alternating direction method of multipliers (ADMM) to decompose the optimization problem into two iterative sub-problems. A flexible blind 3D denoising network (B3DDN) is designed to learn deep priors and to solve the denoising sub-problem with different noise levels. A measure of 3D residual whiteness is then investigated to adjust the penalty parameters when solving the quadratic sub-problems, as well as a stopping criterion. Experimental results on both simulated and real-world data with ground-truth demonstrate the superiority of the proposed method.
translated by 谷歌翻译
本文介绍了使用基于补丁的先前分布的图像恢复的新期望传播(EP)框架。虽然Monte Carlo技术典型地用于从难以处理的后分布中进行采样,但它们可以在诸如图像恢复之类的高维推论问题中遭受可扩展性问题。为了解决这个问题,这里使用EP来使用多元高斯密度的产品近似后分布。此外,对这些密度的协方差矩阵施加结构约束允许更大的可扩展性和分布式计算。虽然该方法自然适于处理添加剂高斯观察噪声,但它也可以扩展到非高斯噪声。用于高斯和泊松噪声的去噪,染色和去卷积问题进行的实验说明了这种柔性近似贝叶斯方法的潜在益处,以实现与采样技术相比降低的计算成本。
translated by 谷歌翻译
我们介绍树-AMP,站在树近似消息传递,用于高维树结构模型的组成推理的Python包。该包提供统一框架,用于研究以前导出的多种机器学习任务的几种近似消息传递算法,例如广义线性模型,多层网络的推断,矩阵分解和使用不可惩罚的重建。对于某些型号,可以通过状态进化理论上预测算法的渐近性能,并通过自由熵形式主义估计的测量熵。通过设计模块化:实现因子的每个模块可以与其他模块一起组成,以解决复杂的推理任务。用户只需要声明模型的因子图:推理算法,状态演化和熵估计是完全自动化的。
translated by 谷歌翻译
深度展开是一种基于深度学习的图像重建方法,它弥合了基于模型和纯粹的基于深度学习的图像重建方法之间的差距。尽管深层展开的方法实现了成像问题的最新性能,并允许将观察模型纳入重建过程,但它们没有提供有关重建图像的任何不确定性信息,这严重限制了他们在实践中的使用,尤其是用于安全 - 关键成像应用。在本文中,我们提出了一个基于学习的图像重建框架,该框架将观察模型纳入重建任务中,并能够基于深层展开和贝叶斯神经网络来量化认知和核心不确定性。我们证明了所提出的框架在磁共振成像和计算机断层扫描重建问题上的不确定性表征能力。我们研究了拟议框架提供的认知和态度不确定性信息的特征,以激发未来的研究利用不确定性信息来开发更准确,健壮,可信赖,不确定性,基于学习的图像重建和成像问题的分析方法。我们表明,所提出的框架可以提供不确定性信息,同时与最新的深层展开方法实现可比的重建性能。
translated by 谷歌翻译
Erroneous correspondences between samples and their respective channel or target commonly arise in several real-world applications. For instance, whole-brain calcium imaging of freely moving organisms, multiple target tracking or multi-person contactless vital sign monitoring may be severely affected by mismatched sample-channel assignments. To systematically address this fundamental problem, we pose it as a signal reconstruction problem where we have lost correspondences between the samples and their respective channels. We show that under the assumption that the signals of interest admit a sparse representation over an overcomplete dictionary, unique signal recovery is possible. Our derivations reveal that the problem is equivalent to a structured unlabeled sensing problem without precise knowledge of the sensing matrix. Unfortunately, existing methods are neither robust to errors in the regressors nor do they exploit the structure of the problem. Therefore, we propose a novel robust two-step approach for the reconstruction of shuffled sparse signals. The performance and robustness of the proposed approach is illustrated in an application of whole-brain calcium imaging in computational neuroscience. The proposed framework can be generalized to sparse signal representations other than the ones considered in this work to be applied in a variety of real-world problems with imprecise measurement or channel assignment.
translated by 谷歌翻译
Neural networks have recently allowed solving many ill-posed inverse problems with unprecedented performance. Physics informed approaches already progressively replace carefully hand-crafted reconstruction algorithms in real applications. However, these networks suffer from a major defect: when trained on a given forward operator, they do not generalize well to a different one. The aim of this paper is twofold. First, we show through various applications that training the network with a family of forward operators allows solving the adaptivity problem without compromising the reconstruction quality significantly. Second, we illustrate that this training procedure allows tackling challenging blind inverse problems. Our experiments include partial Fourier sampling problems arising in magnetic resonance imaging (MRI), computerized tomography (CT) and image deblurring.
translated by 谷歌翻译
近年来,人们一直关注利用神经网络的统计建模能力来重建亚采样磁共振成像(MRI)数据。大多数提出的方法假设存在代表性的完全采样数据集并使用完全监督的培训。但是,对于许多应用程序,没有完全采样的培训数据,并且可能非常不切实际。因此,对仅使用亚采样数据进行培训的自我监督方法的开发和理解是非常可取的。这项工作将noisier2noise框架扩展到最初是为自我监管的denoising任务构建的,并将其密度子采样的MRI数据扩展到。我们使用Noisier2Noise框架来分析通过数据不采样(SSDU)来解释自我监督学习的表现,这是一种最近提出的方法,在实践中表现良好,但直到现在一直缺乏理论上的理由。我们还使用该框架来修改SSDU,我们发现它大大提高了其重建质量和鲁棒性,并在FastMRI Brain DataSet全面监督培训的1%内提供了测试集的于点。
translated by 谷歌翻译