在图像中检测异常区域是工业监测中经常遇到的问题。一个相关的例子是对正常条件下符合特定纹理的组织和其他产品的分析,而缺陷会引入正常模式的变化。我们通过训练深层自动编码器来解决异常检测问题,我们表明,基于复杂的小波结构相似性(CW-SSIM)采用损失函数(CW-SSIM)与传统的自动编码器损失函数相比,这类图像上的检测性能出色。我们对众所周知的异常检测基准测试的实验表明,通过这种损失函数训练的简单模型可以实现可比性或优越的性能,从而利用更深入,更大,更大的计算要求的神经网络的最先进方法。
translated by 谷歌翻译
与行业4.0的发展相一致,越来越多的关注被表面缺陷检测领域所吸引。提高效率并节省劳动力成本已稳步成为行业领域引起人们关注的问题,近年来,基于深度学习的算法比传统的视力检查方法更好。尽管现有的基于深度学习的算法偏向于监督学习,但这不仅需要大量标记的数据和大量的劳动力,而且还效率低下,并且有一定的局限性。相比之下,最近的研究表明,无监督的学习在解决视觉工业异常检测的高于缺点方面具有巨大的潜力。在这项调查中,我们总结了当前的挑战,并详细概述了最近提出的针对视觉工业异常检测的无监督算法,涵盖了五个类别,其创新点和框架详细描述了。同时,提供了包含表面图像样本的公开可用数据集的信息。通过比较不同类别的方法,总结了异常检测算法的优点和缺点。预计将协助研究社区和行业发展更广泛,更跨域的观点。
translated by 谷歌翻译
当前,借助监督学习方法,基于深度学习的视觉检查已取得了非常成功的成功。但是,在实际的工业场景中,缺陷样本的稀缺性,注释的成本以及缺乏缺陷的先验知识可能会使基于监督的方法无效。近年来,无监督的异常定位算法已在工业检查任务中广泛使用。本文旨在通过深入学习在工业图像中无视无视的异常定位中的最新成就来帮助该领域的研究人员。该调查回顾了120多个重要出版物,其中涵盖了异常定位的各个方面,主要涵盖了所审查方法的各种概念,挑战,分类法,基准数据集和定量性能比较。在审查迄今为止的成就时,本文提供了一些未来研究方向的详细预测和分析。这篇综述为对工业异常本地化感兴趣的研究人员提供了详细的技术信息,并希望将其应用于其他领域的异常本质。
translated by 谷歌翻译
歧视性无监督的表面异常检测的最新面积取决于外部数据集用于合成异常训练图像的外部数据集。这种方法很容易出现近乎分布异常的失败,因为由于它们与无异常区域的相似性,因此很难现实地合成这些异常。我们提出了一个基于量化的特征空间表示的架构,该架构避免了图像级异常合成要求。在没有对异常的视觉特性做出任何假设的情况下,DSR通过对学到的量化特征空间进行采样,从而在特征级别生成异常,从而允许受控的近乎分布异常。 DSR在KSDD2和MVTEC异常检测数据集上实现了最新结果。关于具有挑战性的现实世界KSDD2数据集的实验表明,DSR明显优于其他无监督的表面异常检测方法,在异常检测中提高了10%的AP,并在异常定位中提高了35%的AP。
translated by 谷歌翻译
无监督的异常检测已成为一种流行的方法,可以检测医学图像中的病理,因为它不需要监督或标签进行训练。最常见的是,异常检测模型会生成输入映像的“正常”版本,而Pixel $ l^p $ - 两者的差异用于本地化异常。但是,大多数医学图像中存在的复杂解剖结构的不完善重建通常是由于不完善的重建而发生的。该方法还无法检测到没有与周围组织的强度差异很大的异常。我们建议使用特征映射功能解决此问题,该功能将输入强度图像转换为具有多个通道的空间,在该空间中可以沿着从原始图像提取的不同判别特征地图检测到异常。然后,我们使用结构相似性损失在该空间中训练自动编码器模型,该模型不仅考虑强度差异,而且考虑对比度和结构。我们的方法大大提高了大脑MRI的两个医学数据集的性能。代码和实验可从https://github.com/felime/feature-autoencoder获得
translated by 谷歌翻译
深度卷积自动编码器为学习非线性维度降低的方式提供了有效的工具。最近,它们已用于视觉域中的异常检测任务。通过使用无异常示例为重建误差进行优化,普遍的信念是,训练有素的网络在测试阶段很难重建异常部分。这通常是通过控制网络的容量来通过减小瓶颈层的大小或在其激活上执行稀疏性约束来完成的。但是,这些技术都没有明确惩罚重建异常信号,通常会导致检测不佳。我们通过调整自我监督的学习制度来解决这个问题,该系统允许在训练过程中使用判别性信息,同时正规化模型通过修改后的重建错误将重点放在数据歧管上,从而导致准确的检测。与相关方法不同,训练和预测过程中提出的方法的推断非常有效地处理整个输入图像。我们对MVTEC异常检测数据集的实验表明该方法的高识别和定位性能。特别是,在纹理 - 材料上,我们的方法始终以大幅度的边距优于最近的一系列最近的异常检测方法。
translated by 谷歌翻译
异常识别中的一个常见研究区域是基于纹理背景的工业图像异常检测。纹理图像的干扰和纹理异常的小型性是许多现有模型无法检测异常的主要原因。我们提出了一种异常检测策略,该策略根据上述问题结合了字典学习和归一流的流程。我们的方法增强了已经使用的两阶段异常检测方法。为了改善基线方法,这项研究增加了表示学习中的正常流程,并结合了深度学习和词典学习。在实验验证后,所有MVTEC AD纹理类型数据的改进算法超过了95 $ \%$检测精度。它显示出强大的鲁棒性。地毯数据的基线方法的检测准确性为67.9%。该文章已升级,将检测准确性提高到99.7%。
translated by 谷歌翻译
异常检测是确定不符合正常数据分布的样品。由于异常数据的无法获得,培训监督的深神经网络是一项繁琐的任务。因此,无监督的方法是解决此任务的常见方法。深度自动编码器已被广泛用作许多无监督的异常检测方法的基础。但是,深层自动编码器的一个显着缺点是,它们通过概括重建异常值来提供不足的表示异常检测的表示。在这项工作中,我们设计了一个对抗性框架,该框架由两个竞争组件组成,一个对抗性变形者和一个自动编码器。对抗性变形器是一种卷积编码器,学会产生有效的扰动,而自动编码器是一个深层卷积神经网络,旨在重建来自扰动潜在特征空间的图像。这些网络经过相反的目标训练,在这种目标中,对抗性变形者会产生用于编码器潜在特征空间的扰动,以最大化重建误差,并且自动编码器试图中和这些扰动的效果以最大程度地减少它。当应用于异常检测时,该提出的方法会由于对特征空间的扰动应用而学习语义上的富裕表示。所提出的方法在图像和视频数据集上的异常检测中优于现有的最新方法。
translated by 谷歌翻译
在视觉检查形式中对纹理表面进行工业检查的最新进展使这种检查成为可能,以实现高效,灵活的制造系统。我们提出了一个无监督的特征内存重排网络(FMR-NET),以同时准确检测各种纹理缺陷。与主流方法一致,我们采用了背景重建的概念。但是,我们创新地利用人工合成缺陷来使模型识别异常,而传统智慧仅依赖于无缺陷的样本。首先,我们采用一个编码模块来获得纹理表面的多尺度特征。随后,提出了一个基于对比的基于学习的内存特征模块(CMFM)来获得判别性表示,并在潜在空间中构建一个正常的特征记忆库,可以用作补丁级别的缺陷和快速异常得分。接下来,提出了一个新型的全球特征重排模块(GFRM),以进一步抑制残余缺陷的重建。最后,一个解码模块利用还原的功能来重建正常的纹理背景。此外,为了提高检查性能,还利用了两阶段的训练策略进行准确的缺陷恢复改进,并且我们利用一种多模式检查方法来实现噪声刺激性缺陷定位。我们通过广泛的实验来验证我们的方法,并通过多级检测方法在协作边缘进行实用的部署 - 云云智能制造方案,表明FMR-NET具有先进的检查准确性,并显示出巨大的使用潜力在启用边缘计算的智能行业中。
translated by 谷歌翻译
We aim at constructing a high performance model for defect detection that detects unknown anomalous patterns of an image without anomalous data. To this end, we propose a two-stage framework for building anomaly detectors using normal training data only. We first learn self-supervised deep representations and then build a generative one-class classifier on learned representations. We learn representations by classifying normal data from the CutPaste, a simple data augmentation strategy that cuts an image patch and pastes at a random location of a large image. Our empirical study on MVTec anomaly detection dataset demonstrates the proposed algorithm is general to be able to detect various types of real-world defects. We bring the improvement upon previous arts by 3.1 AUCs when learning representations from scratch. By transfer learning on pretrained representations on ImageNet, we achieve a new state-of-theart 96.6 AUC. Lastly, we extend the framework to learn and extract representations from patches to allow localizing defective areas without annotations during training.
translated by 谷歌翻译
深度神经网络需要特定的层来处理点云,因为点的分散和不规则位置使我们无法使用卷积过滤器。在这里,我们介绍了复合层,该复合层是点云的新卷积操作员。我们的复合层的特殊性是,它在将点与其特征向量结合之前从点位置提取和压缩空间信息。与众所周知的点横向跨层相比,我们的复合层提供了额外的正则化,并确保了参数和参数数量方面的灵活性更大。为了展示设计灵活性,我们还定义了一个集合复合层,该复合层以非线性方式组合空间信息和特征,并且我们使用这些层来实现卷积和聚集的综合材料。我们训练我们的复合烯类进行分类,最引人注目的是无监督的异常检测。我们对合成和现实世界数据集的实验表明,在这两个任务中,我们的CompositeNets都优于表现要点,尽管具有更简单的体系结构,但取得了与KPCONV相似的结果。此外,我们的复合烯类基本上优于现有的解决方案,用于点云上的异常检测。
translated by 谷歌翻译
计算机愿景中的异常检测是识别偏离一组正常图像的图像的任务。一种常见的方法是培训深卷积的自动化器以覆盖图像的覆盖部分,并将输出与原始图像进行比较。仅通过训练自由异常样品,假设模型无法正确地重建异常区域。通过染色的异常检测,我们建议将信息从潜在的遥远地区纳入其中。特别是,我们将异常检测造成一种补丁染色问题,并建议用基于自我关注的方法丢弃卷曲来解决它。所提出的修复变压器(帧内)训练以在大序列图像贴片中训练覆盖贴片,从而将信息集成在输入图像的大区域上。从划痕训练时,与不使用额外培训数据的其他方法相比,Intra实现结果对MVTEC AD数据集的当前最先进的标准进行检测并将其超越分段。
translated by 谷歌翻译
我们考虑了在自主移动机器人的视觉传感数据流中检测的问题,这些语义模式相对于机器人在类似环境中的先前经验而言是不寻常的(即异常)。这些异常可能表明危害不可预见,并且在失败昂贵的情况下,可以用来触发避免行为。我们贡献了在机器人勘探方案中获得的三个基于图像的新型数据集,其中包括超过200k的标记帧,涵盖了各种类型的异常。在这些数据集上,我们研究了基于以不同尺度运行的自动编码器的异常检测方法的性能。
translated by 谷歌翻译
异常检测通常被追求为单级分类问题,其中模型只能从正常训练样本中学习,同时在正常和异常的测试样本上进行评估。在异常检测的成功方法中,一种杰出的方法依赖于预测屏蔽信息(例如修补程序,未来帧等)并利用相对于屏蔽信息的重建误差作为异常分数。与相关方法不同,我们建议将基于重建的功能集成为新颖的自我监督的预测建筑结构块。所提出的自我监督块是通用的,并且可以容易地结合到各种最先进的异常检测方法中。我们的块从带有扩张过滤器的卷积层开始,其中掩盖接收场的中心区域。得到的激活图通过通道注意模块传递。我们的块配备有损失,使得能够最小化接收领域中的遮蔽区域的重建误差。我们通过将其集成到几种最先进的框架中,以便在图像和视频上进行异常检测,提供对MVTEC AD,Avenue和Shanghaitech的经验证据提供了显着改进的经验证据。
translated by 谷歌翻译
在工业应用中,无监督的异常检测是一项艰巨的任务,因为收集足够的异常样品是不切实际的。在本文中,通过共同探索锻造异常样品的有效生成方法和正常样品特征作为分割异常检测的指导信息,提出了一种新颖的自我监督指导性分割框架(SGSF)。具体而言,为确保生成的锻造异常样品有利于模型训练,提出了显着性增强模块(SAM)。 Sam引入了显着图来产生显着性Perlin噪声图,并制定了一种自适应分割策略,以在显着区域产生不规则的掩模。然后,将口罩用于生成伪造的异常样品作为训练的负样本。不幸的是,锻造和真实异常样品之间的分布差距使得基于锻造样品训练的模型难以有效定位真实异常。为此,提出了自我监督的指导网络(SGN)。它利用自我监督的模块提取无噪声的功能,并包含正常的语义信息作为分割模块的先验知识。分割模块具有正常模式段的知识,这些片段与指导特征不同。为了评估SGSF对异常检测的有效性,在三个异常检测数据集上进行了广泛的实验。实验结果表明,SGSF达到了最新的异常检测结果。
translated by 谷歌翻译
在表面缺陷检测中,由于阳性和负样品数量的极度失衡,基于阳性样本的异常检测方法已受到越来越多的关注。具体而言,基于重建的方法是最受欢迎的方法。但是,退出的方法要么难以修复异常的前景或重建清晰的背景。因此,我们提出了一个清晰的内存调制自动编码器。首先,我们提出了一个新颖的清晰内存调节模块,该模块将编码和内存编码结合在一起,以忘记和输入的方式,从而修复异常的前景和保存透明背景。其次,提出了一般人工异常产生算法来模拟尽可能逼真和特征富含特征的异常。最后,我们提出了一种新型的多量表特征残差检测方法,用于缺陷分割,这使缺陷位置更加准确。 CMA-AE使用五个基准数据集上的11种最先进方法进行比较实验,显示F1量的平均平均改善平均为18.6%。
translated by 谷歌翻译
我们考虑为移动机器人构建视觉异常检测系统的问题。标准异常检测模型是使用仅由非异常数据组成的大型数据集训练的。但是,在机器人技术应用中,通常可以使用(可能很少)的异常示例。我们解决了利用这些数据以通过与Real-NVP损失共同使辅助外离群损失损失共同使实际NVP异常检测模型的性能提高性能的问题。我们在新的数据集(作为补充材料)上进行定量实验,该数据集在室内巡逻方案中设计为异常检测。在不连接测试集中,我们的方法优于替代方案,并表明即使少数异常框架也可以实现重大的性能改进。
translated by 谷歌翻译
Unsupervised pixel-level defective region segmentation is an important task in image-based anomaly detection for various industrial applications. The state-of-the-art methods have their own advantages and limitations: matrix-decomposition-based methods are robust to noise but lack complex background image modeling capability; representation-based methods are good at defective region localization but lack accuracy in defective region shape contour extraction; reconstruction-based methods detected defective region match well with the ground truth defective region shape contour but are noisy. To combine the best of both worlds, we present an unsupervised patch autoencoder based deep image decomposition (PAEDID) method for defective region segmentation. In the training stage, we learn the common background as a deep image prior by a patch autoencoder (PAE) network. In the inference stage, we formulate anomaly detection as an image decomposition problem with the deep image prior and domain-specific regularizations. By adopting the proposed approach, the defective regions in the image can be accurately extracted in an unsupervised fashion. We demonstrate the effectiveness of the PAEDID method in simulation studies and an industrial dataset in the case study.
translated by 谷歌翻译
Anomaly detection and localization are widely used in industrial manufacturing for its efficiency and effectiveness. Anomalies are rare and hard to collect and supervised models easily over-fit to these seen anomalies with a handful of abnormal samples, producing unsatisfactory performance. On the other hand, anomalies are typically subtle, hard to discern, and of various appearance, making it difficult to detect anomalies and let alone locate anomalous regions. To address these issues, we propose a framework called Prototypical Residual Network (PRN), which learns feature residuals of varying scales and sizes between anomalous and normal patterns to accurately reconstruct the segmentation maps of anomalous regions. PRN mainly consists of two parts: multi-scale prototypes that explicitly represent the residual features of anomalies to normal patterns; a multisize self-attention mechanism that enables variable-sized anomalous feature learning. Besides, we present a variety of anomaly generation strategies that consider both seen and unseen appearance variance to enlarge and diversify anomalies. Extensive experiments on the challenging and widely used MVTec AD benchmark show that PRN outperforms current state-of-the-art unsupervised and supervised methods. We further report SOTA results on three additional datasets to demonstrate the effectiveness and generalizability of PRN.
translated by 谷歌翻译
在计算机视觉领域,异常检测最近引起了越来越多的关注,这可能是由于其广泛的应用程序从工业生产线上的产品故障检测到视频监视中即将发生的事件检测到在医疗扫描中发现病变。不管域如何,通常将异常检测构架为一级分类任务,其中仅在正常示例上进行学习。整个成功的异常检测方法的家庭基于学习重建掩盖的正常输入(例如贴片,未来帧等),并将重建误差的幅度作为异常水平的指标。与其他基于重建的方法不同,我们提出了一种新颖的自我监督蒙面的卷积变压器块(SSMCTB),该卷积变压器块(SSMCTB)包括基于重建的功能在核心架构层面上。拟议的自我监督块非常灵活,可以在神经网络的任何层上掩盖信息,并与广泛的神经体系结构兼容。在这项工作中,我们扩展了以前的自我监督预测性卷积专注块(SSPCAB),并具有3D掩盖的卷积层,以及用于频道注意的变压器。此外,我们表明我们的块适用于更广泛的任务,在医学图像和热视频中添加异常检测到基于RGB图像和监视视频的先前考虑的任务。我们通过将SSMCTB的普遍性和灵活性整合到多个最先进的神经模型中,以进行异常检测,从而带来了经验结果,可以证实对五个基准的绩效改进:MVTEC AD,BRATS,BRATS,Avenue,Shanghaitech和Thermal和Thermal和Thermal罕见事件。我们在https://github.com/ristea/ssmctb上发布代码和数据作为开源。
translated by 谷歌翻译