深度卷积自动编码器为学习非线性维度降低的方式提供了有效的工具。最近,它们已用于视觉域中的异常检测任务。通过使用无异常示例为重建误差进行优化,普遍的信念是,训练有素的网络在测试阶段很难重建异常部分。这通常是通过控制网络的容量来通过减小瓶颈层的大小或在其激活上执行稀疏性约束来完成的。但是,这些技术都没有明确惩罚重建异常信号,通常会导致检测不佳。我们通过调整自我监督的学习制度来解决这个问题,该系统允许在训练过程中使用判别性信息,同时正规化模型通过修改后的重建错误将重点放在数据歧管上,从而导致准确的检测。与相关方法不同,训练和预测过程中提出的方法的推断非常有效地处理整个输入图像。我们对MVTEC异常检测数据集的实验表明该方法的高识别和定位性能。特别是,在纹理 - 材料上,我们的方法始终以大幅度的边距优于最近的一系列最近的异常检测方法。
translated by 谷歌翻译
当前,借助监督学习方法,基于深度学习的视觉检查已取得了非常成功的成功。但是,在实际的工业场景中,缺陷样本的稀缺性,注释的成本以及缺乏缺陷的先验知识可能会使基于监督的方法无效。近年来,无监督的异常定位算法已在工业检查任务中广泛使用。本文旨在通过深入学习在工业图像中无视无视的异常定位中的最新成就来帮助该领域的研究人员。该调查回顾了120多个重要出版物,其中涵盖了异常定位的各个方面,主要涵盖了所审查方法的各种概念,挑战,分类法,基准数据集和定量性能比较。在审查迄今为止的成就时,本文提供了一些未来研究方向的详细预测和分析。这篇综述为对工业异常本地化感兴趣的研究人员提供了详细的技术信息,并希望将其应用于其他领域的异常本质。
translated by 谷歌翻译
计算机愿景中的异常检测是识别偏离一组正常图像的图像的任务。一种常见的方法是培训深卷积的自动化器以覆盖图像的覆盖部分,并将输出与原始图像进行比较。仅通过训练自由异常样品,假设模型无法正确地重建异常区域。通过染色的异常检测,我们建议将信息从潜在的遥远地区纳入其中。特别是,我们将异常检测造成一种补丁染色问题,并建议用基于自我关注的方法丢弃卷曲来解决它。所提出的修复变压器(帧内)训练以在大序列图像贴片中训练覆盖贴片,从而将信息集成在输入图像的大区域上。从划痕训练时,与不使用额外培训数据的其他方法相比,Intra实现结果对MVTEC AD数据集的当前最先进的标准进行检测并将其超越分段。
translated by 谷歌翻译
与行业4.0的发展相一致,越来越多的关注被表面缺陷检测领域所吸引。提高效率并节省劳动力成本已稳步成为行业领域引起人们关注的问题,近年来,基于深度学习的算法比传统的视力检查方法更好。尽管现有的基于深度学习的算法偏向于监督学习,但这不仅需要大量标记的数据和大量的劳动力,而且还效率低下,并且有一定的局限性。相比之下,最近的研究表明,无监督的学习在解决视觉工业异常检测的高于缺点方面具有巨大的潜力。在这项调查中,我们总结了当前的挑战,并详细概述了最近提出的针对视觉工业异常检测的无监督算法,涵盖了五个类别,其创新点和框架详细描述了。同时,提供了包含表面图像样本的公开可用数据集的信息。通过比较不同类别的方法,总结了异常检测算法的优点和缺点。预计将协助研究社区和行业发展更广泛,更跨域的观点。
translated by 谷歌翻译
无监督的异常检测和定位是至关重要的任务,因为不可能收集和标记所有可能的异常。许多研究强调了整合本地和全球信息以实现异常分割的重要性。为此,对变压器的兴趣越来越大,它允许对远程内容相互作用进行建模。但是,对于大多数图像量表而言,通过自我注意力的全球互动通常太贵了。在这项研究中,我们介绍了Haloae,这是第一个基于Halonet的局部2D版本的自动编码器。使用Haloae,我们创建了一个混合模型,该模型结合了卷积和局部2D块的自我发项层,并通过单个模型共同执行异常检测和分割。我们在MVTEC数据集上取得了竞争成果,表明结合变压器的视觉模型可以受益于自我发挥操作的本地计算,并为其他应用铺平道路。
translated by 谷歌翻译
我们介绍了一个简单而直观的自我实施任务,自然合成异常(NSA),用于训练仅使用正常培训数据的端到端模型,以实现异常检测和定位。NSA将Poisson图像编辑整合到来自单独图像的各种尺寸的无缝混合缩放贴片。这会产生广泛的合成异常,与以前的自我监督异常检测的数据 - 启发策略相比,它们更像自然的子图像不规则。我们使用天然和医学图像评估提出的方法。我们对MVTEC AD数据集进行的实验表明,经过训练的用于本地NSA异常的模型可以很好地概括地检测现实世界中的先验未知类型的制造缺陷。我们的方法实现了97.2的总检测AUROC,优于所有以前的方法,这些方法在不使用其他数据集的情况下学习。可在https://github.com/hmsch/natural-synthetic-anomalies上获得代码。
translated by 谷歌翻译
在工业应用中,无监督的异常检测是一项艰巨的任务,因为收集足够的异常样品是不切实际的。在本文中,通过共同探索锻造异常样品的有效生成方法和正常样品特征作为分割异常检测的指导信息,提出了一种新颖的自我监督指导性分割框架(SGSF)。具体而言,为确保生成的锻造异常样品有利于模型训练,提出了显着性增强模块(SAM)。 Sam引入了显着图来产生显着性Perlin噪声图,并制定了一种自适应分割策略,以在显着区域产生不规则的掩模。然后,将口罩用于生成伪造的异常样品作为训练的负样本。不幸的是,锻造和真实异常样品之间的分布差距使得基于锻造样品训练的模型难以有效定位真实异常。为此,提出了自我监督的指导网络(SGN)。它利用自我监督的模块提取无噪声的功能,并包含正常的语义信息作为分割模块的先验知识。分割模块具有正常模式段的知识,这些片段与指导特征不同。为了评估SGSF对异常检测的有效性,在三个异常检测数据集上进行了广泛的实验。实验结果表明,SGSF达到了最新的异常检测结果。
translated by 谷歌翻译
歧视性无监督的表面异常检测的最新面积取决于外部数据集用于合成异常训练图像的外部数据集。这种方法很容易出现近乎分布异常的失败,因为由于它们与无异常区域的相似性,因此很难现实地合成这些异常。我们提出了一个基于量化的特征空间表示的架构,该架构避免了图像级异常合成要求。在没有对异常的视觉特性做出任何假设的情况下,DSR通过对学到的量化特征空间进行采样,从而在特征级别生成异常,从而允许受控的近乎分布异常。 DSR在KSDD2和MVTEC异常检测数据集上实现了最新结果。关于具有挑战性的现实世界KSDD2数据集的实验表明,DSR明显优于其他无监督的表面异常检测方法,在异常检测中提高了10%的AP,并在异常定位中提高了35%的AP。
translated by 谷歌翻译
Anomaly detection and localization are widely used in industrial manufacturing for its efficiency and effectiveness. Anomalies are rare and hard to collect and supervised models easily over-fit to these seen anomalies with a handful of abnormal samples, producing unsatisfactory performance. On the other hand, anomalies are typically subtle, hard to discern, and of various appearance, making it difficult to detect anomalies and let alone locate anomalous regions. To address these issues, we propose a framework called Prototypical Residual Network (PRN), which learns feature residuals of varying scales and sizes between anomalous and normal patterns to accurately reconstruct the segmentation maps of anomalous regions. PRN mainly consists of two parts: multi-scale prototypes that explicitly represent the residual features of anomalies to normal patterns; a multisize self-attention mechanism that enables variable-sized anomalous feature learning. Besides, we present a variety of anomaly generation strategies that consider both seen and unseen appearance variance to enlarge and diversify anomalies. Extensive experiments on the challenging and widely used MVTec AD benchmark show that PRN outperforms current state-of-the-art unsupervised and supervised methods. We further report SOTA results on three additional datasets to demonstrate the effectiveness and generalizability of PRN.
translated by 谷歌翻译
在图像中检测异常区域是工业监测中经常遇到的问题。一个相关的例子是对正常条件下符合特定纹理的组织和其他产品的分析,而缺陷会引入正常模式的变化。我们通过训练深层自动编码器来解决异常检测问题,我们表明,基于复杂的小波结构相似性(CW-SSIM)采用损失函数(CW-SSIM)与传统的自动编码器损失函数相比,这类图像上的检测性能出色。我们对众所周知的异常检测基准测试的实验表明,通过这种损失函数训练的简单模型可以实现可比性或优越的性能,从而利用更深入,更大,更大的计算要求的神经网络的最先进方法。
translated by 谷歌翻译
新奇检测是识别不属于目标类分布的样本的任务。在培训期间,缺乏新颖的课程,防止使用传统分类方法。深度自动化器已被广泛用作许多无监督的新奇检测方法的基础。特别地,上下文自动码器在新颖的检测任务中已经成功了,因为他们通过从随机屏蔽的图像重建原始图像来学习的更有效的陈述。然而,上下文AutoEncoders的显着缺点是随机屏蔽不能一致地涵盖输入图像的重要结构,导致次优表示 - 特别是对于新颖性检测任务。在本文中,为了优化输入掩蔽,我们设计了由两个竞争网络,掩模模块和重建器组成的框架。掩码模块是一个卷积的AutoEncoder,用于生成涵盖最重要的图像的最佳掩码。或者,重建器是卷积编码器解码器,其旨在从屏蔽图像重建未受带的图像。网络训练以侵略的方式训练,其中掩模模块生成应用于给予重构的图像的掩码。以这种方式,掩码模块寻求最大化重建错误的重建错误最小化。当应用于新颖性检测时,与上下文自动置换器相比,所提出的方法学习语义上更丰富的表示,并通过更新的屏蔽增强了在测试时间的新颖性检测。 MNIST和CIFAR-10图像数据集上的新奇检测实验证明了所提出的方法对尖端方法的优越性。在用于新颖性检测的UCSD视频数据集的进一步实验中,所提出的方法实现了最先进的结果。
translated by 谷歌翻译
我们表明,在AutoEncoders(AE)的潜在空间中使用最近的邻居显着提高了单一和多级上下文中半监督新颖性检测的性能。通过学习来检测新奇的方法,以区分非新颖培训类和所有其他看不见的课程。我们的方法利用了最近邻居的重建和给定输入的潜在表示的潜在邻居的结合。我们证明了我们最近的潜在邻居(NLN)算法是内存和时间效率,不需要大量的数据增强,也不依赖于预先训练的网络。此外,我们表明NLN算法很容易应用于多个数据集而无需修改。此外,所提出的算法对于AutoEncoder架构和重建错误方法是不可知的。我们通过使用重建,剩余或具有一致损耗,验证了多个不同的自动码架构,如诸如香草,对抗和变形自身额度的各种标准数据集的方法。结果表明,NLN算法在多级案例的接收器操作特性(AUROC)曲线性能下授予面积增加17%,为单级新颖性检测8%。
translated by 谷歌翻译
We aim at constructing a high performance model for defect detection that detects unknown anomalous patterns of an image without anomalous data. To this end, we propose a two-stage framework for building anomaly detectors using normal training data only. We first learn self-supervised deep representations and then build a generative one-class classifier on learned representations. We learn representations by classifying normal data from the CutPaste, a simple data augmentation strategy that cuts an image patch and pastes at a random location of a large image. Our empirical study on MVTec anomaly detection dataset demonstrates the proposed algorithm is general to be able to detect various types of real-world defects. We bring the improvement upon previous arts by 3.1 AUCs when learning representations from scratch. By transfer learning on pretrained representations on ImageNet, we achieve a new state-of-theart 96.6 AUC. Lastly, we extend the framework to learn and extract representations from patches to allow localizing defective areas without annotations during training.
translated by 谷歌翻译
异常检测通常被追求为单级分类问题,其中模型只能从正常训练样本中学习,同时在正常和异常的测试样本上进行评估。在异常检测的成功方法中,一种杰出的方法依赖于预测屏蔽信息(例如修补程序,未来帧等)并利用相对于屏蔽信息的重建误差作为异常分数。与相关方法不同,我们建议将基于重建的功能集成为新颖的自我监督的预测建筑结构块。所提出的自我监督块是通用的,并且可以容易地结合到各种最先进的异常检测方法中。我们的块从带有扩张过滤器的卷积层开始,其中掩盖接收场的中心区域。得到的激活图通过通道注意模块传递。我们的块配备有损失,使得能够最小化接收领域中的遮蔽区域的重建误差。我们通过将其集成到几种最先进的框架中,以便在图像和视频上进行异常检测,提供对MVTEC AD,Avenue和Shanghaitech的经验证据提供了显着改进的经验证据。
translated by 谷歌翻译
无监督的异常检测已成为一种流行的方法,可以检测医学图像中的病理,因为它不需要监督或标签进行训练。最常见的是,异常检测模型会生成输入映像的“正常”版本,而Pixel $ l^p $ - 两者的差异用于本地化异常。但是,大多数医学图像中存在的复杂解剖结构的不完善重建通常是由于不完善的重建而发生的。该方法还无法检测到没有与周围组织的强度差异很大的异常。我们建议使用特征映射功能解决此问题,该功能将输入强度图像转换为具有多个通道的空间,在该空间中可以沿着从原始图像提取的不同判别特征地图检测到异常。然后,我们使用结构相似性损失在该空间中训练自动编码器模型,该模型不仅考虑强度差异,而且考虑对比度和结构。我们的方法大大提高了大脑MRI的两个医学数据集的性能。代码和实验可从https://github.com/felime/feature-autoencoder获得
translated by 谷歌翻译
人脑解剖图像的专家解释是神经放射学的中心部分。已经提出了几种基于机器学习的技术来协助分析过程。但是,通常需要对ML模型进行培训以执行特定的任务,例如脑肿瘤分割或分类。相应的培训数据不仅需要费力的手动注释,而且人脑MRI中可以存在多种异常 - 甚至同时发生,这使得所有可能的异常情况都非常具有挑战性。因此,可能的解决方案是一种无监督的异常检测(UAD)系统,可以从健康受试者的未标记数据集中学习数据分布,然后应用以检测​​分布样本。然后,这种技术可用于检测异常 - 病变或异常,例如脑肿瘤,而无需明确训练该特定病理的模型。过去已经为此任务提出了几种基于变异的自动编码器(VAE)技术。即使它们在人为模拟的异常情况下表现良好,但其中许多在检测临床数据中的异常情况下表现较差。这项研究提出了“上下文编码” VAE(CEVAE)模型的紧凑版本,并结合了预处理和后处理步骤,创建了UAD管道(Strega)(Strega),该步骤对临床数据更强大,并显示其在检测到其检测方面的适用性脑MRI中的肿瘤等异常。 The proposed pipeline achieved a Dice score of 0.642$\pm$0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859$\pm$0.112 while detecting artificially induced anomalies, while the best performing baseline achieved 0.522$\pm$0.135 and 0.783$\ PM分别为0.111美元。
translated by 谷歌翻译
Unsupervised pixel-level defective region segmentation is an important task in image-based anomaly detection for various industrial applications. The state-of-the-art methods have their own advantages and limitations: matrix-decomposition-based methods are robust to noise but lack complex background image modeling capability; representation-based methods are good at defective region localization but lack accuracy in defective region shape contour extraction; reconstruction-based methods detected defective region match well with the ground truth defective region shape contour but are noisy. To combine the best of both worlds, we present an unsupervised patch autoencoder based deep image decomposition (PAEDID) method for defective region segmentation. In the training stage, we learn the common background as a deep image prior by a patch autoencoder (PAE) network. In the inference stage, we formulate anomaly detection as an image decomposition problem with the deep image prior and domain-specific regularizations. By adopting the proposed approach, the defective regions in the image can be accurately extracted in an unsupervised fashion. We demonstrate the effectiveness of the PAEDID method in simulation studies and an industrial dataset in the case study.
translated by 谷歌翻译
我们提出了一种用于测试使用吸收材料记录辐射电磁(EM)场的天线阵列的新方法,并使用条件编码器解码器模型通过AI评估所得到的热图像串。鉴于馈送到每个阵列元件的信号的功率和相位,我们能够通过我们训练的模型重建正常序列,并将其与热相机观察到的真实序列进行比较。这些热图仅包含低级模式,例如各种形状的斑点。然后,基于轮廓的异常检测器可以将重建误差矩阵映射到异常的分数,以识别故障的天线阵列,并将分类F量度(F-M)增加到46%。我们在天线测试系统收集的时间序列热量量表上展示了我们的方法。传统上,变形自身摩擦(VAE)学习观察噪声可以产生比具有恒定噪声假设的VAE更好的结果。然而,我们证明这不是对这种低级模式的异常检测的情况,有两个原因。首先,结合所学到的观察噪声的基线度量重建概率不能分化异常模式。其次,具有较低观察噪声假设的VAE的接收器操作特性(ROC)曲线下的区域比具有学习噪声的VAE高出11.83%。
translated by 谷歌翻译
基于可视异常检测的内存模块的重建方法试图缩小正常样品的重建误差,同时将其放大为异常样品。不幸的是,现有的内存模块不完全适用于异常检测任务,并且异常样品的重建误差仍然很小。为此,这项工作提出了一种新的无监督视觉异常检测方法,以共同学习有效的正常特征并消除不利的重建错误。具体而言,提出了一个新颖的分区内存库(PMB)模块,以有效地学习和存储具有正常样本语义完整性的详细特征。它开发了一种新的分区机制和一种独特的查询生成方法,以保留上下文信息,然后提高内存模块的学习能力。替代探索了拟议的PMB和跳过连接,以使异常样品的重建更糟。为了获得更精确的异常定位结果并解决了累积重建误差的问题,提出了一个新型的直方图误差估计模块,以通过差异图像的直方图自适应地消除了不利的误差。它可以改善异常本地化性能而不会增加成本。为了评估所提出的异常检测和定位方法的有效性,在三个广泛使用的异常检测数据集上进行了广泛的实验。与基于内存模块的最新方法相比,提出的方法的令人鼓舞的性能证明了其优越性。
translated by 谷歌翻译
与诊断放射学相关的患者护理质量与医师工作量成正比。分割是诊断和治疗程序的基本限制前体。机器学习的进步(ML)旨在提高诊断效率,以用广义算法替代单个应用程序。在无监督的异常检测(UAD)中,基于卷积神经网络(CNN)自动编码器(AES)和变异自动编码器(VAE)被视为基于重建的异常分段的事实方法。在医学图像中寻找异常区域是使用异常分割的主要应用之一。 CNN中受限制的接收场限制了CNN对全局上下文进行建模,因此,如果异常区域涵盖了图像的一部分,则基于CNN的AES无法带来对图像的语义理解。另一方面,视觉变压器(VIT)已成为CNN的竞争替代品。它依赖于能够将图像斑块相互关联的自我发挥机制。为了重建一个连贯和更现实的图像,在这项工作中,我们研究了变形金刚在为基于重建的UAD任务构建AES的功能中。我们专注于用于大脑磁共振成像(MRI)的异常分割,并呈现五个基于变压器的模型,同时可以使分割性能可比或与最新模型(SOTA)模型相当。源代码可在github https://github.com/ahmedgh970/transformers_unsupervise_anomaly_segentation.git上获得
translated by 谷歌翻译