信仰传播(BP)是针对图形模型的各种推理任务的重要消息算法,包括解决约束优化问题(COPS)。已经表明,BP可以通过在发送新消息(即抑制作用)之前将旧消息和新消息混合在各种基准测试中实现最先进的性能。但是,现有的调整BP静态阻尼因子的方法不仅在费力,而且损害其性能。此外,现有的BP算法在撰写新消息时平均处理每个变量节点的邻居,这也限制了其探索能力。为了解决这些问题,我们无缝地集成了BP,封闭式复发单元(GRU)和图形注意网络(GATS),以推理构成新的BP消息的动态权重和阻尼因子,以推理有关动态权重和阻尼因子。我们的模型,深切的信念传播(DABP),将因子图和每次迭代中的BP消息作为输入,并通过GRUS和GATs渗透最佳权重和阻尼因子,然后是多头注意力层。此外,与现有的基于神经的BP变体不同,我们提出了一种新颖的DABP的自我监督学习算法,其解决方案成本不需要昂贵的培训标签,并且还可以通过有效的在线学习避免常见的分发问题。广泛的实验表明,我们的模型大大优于最先进的基线。
translated by 谷歌翻译
分布式约束优化问题(DCOPS)是组合优化问题的重要子类,其中信息和控件分布在多个自主代理中。此前,通过学习有效启发式,机器学习(ML)基本上应用于解决组合优化问题。然而,现有的基于ML的启发式方法通常不完全到不同的搜索算法。最重要的是,这些方法通常需要全面了解要解决的问题,这不适合分布式设置,其中由于地理限制或隐私问题,集中化并不逼真。为了解决一般性问题,我们提出了一种用于DCOPS的新型针对性的非循环图表示模式,并利用图表注意网络(GATS)来嵌入图形表示。我们的模型GAT-PCM,然后以离线方式使用最佳标记的数据来预先预订,以构建有效的启发式,以提高广泛的DCOP算法,其中评估部分分配的质量至关重要,例如本地搜索或回溯搜索。此外,为了实现分散的模型推断,我们提出了一个GAT-PCM的分布式嵌入式模式,其中每个代理只交换嵌入的向量,并显示其声音和复杂性。最后,我们通过将其与本地搜索或回溯搜索算法组合来展示我们模型的有效性。广泛的经验评估表明,GAT-PCM升级算法显着优于各种基准中的最先进的方法。预磨料模型可在https://github.com/dyc941126/gat-pcm上获得。
translated by 谷歌翻译
We present the Neural Satisfiability Network (NSNet), a general neural framework that models satisfiability problems as probabilistic inference and meanwhile exhibits proper explainability. Inspired by the Belief Propagation (BP), NSNet uses a novel graph neural network (GNN) to parameterize BP in the latent space, where its hidden representations maintain the same probabilistic interpretation as BP. NSNet can be flexibly configured to solve both SAT and #SAT problems by applying different learning objectives. For SAT, instead of directly predicting a satisfying assignment, NSNet performs marginal inference among all satisfying solutions, which we empirically find is more feasible for neural networks to learn. With the estimated marginals, a satisfying assignment can be efficiently generated by rounding and executing a stochastic local search. For #SAT, NSNet performs approximate model counting by learning the Bethe approximation of the partition function. Our evaluations show that NSNet achieves competitive results in terms of inference accuracy and time efficiency on multiple SAT and #SAT datasets.
translated by 谷歌翻译
我们提供了传递用于使用图形模型推断的新消息传递算法。我们的方法是为最困难的推理问题而设计的,即循环信念传播和其他启发式方法无法融合。当基础图形模型是无环时,信念的传播可以保证会收敛,但是当基础图具有复杂的拓扑结构时,可能会收敛,并且对初始化敏感。本文描述了对标准信念传播算法的修改,这些算法导致方法会收敛到具有任意拓扑和潜在功能的图形模型上的独特解决方案。
translated by 谷歌翻译
我们提出了一个通用图形神经网络体系结构,可以作为任何约束满意度问题(CSP)作为末端2端搜索启发式训练。我们的体系结构可以通过政策梯度下降进行无监督的培训,以纯粹的数据驱动方式为任何CSP生成问题的特定启发式方法。该方法基于CSP的新型图表,既是通用又紧凑的,并且使我们能够使用一个GNN处理所有可能的CSP实例,而不管有限的Arity,关系或域大小。与以前的基于RL的方法不同,我们在全局搜索动作空间上运行,并允许我们的GNN在随机搜索的每个步骤中修改任何数量的变量。这使我们的方法能够正确利用GNN的固有并行性。我们进行了彻底的经验评估,从随机数据(包括图形着色,Maxcut,3-SAT和Max-K-Sat)中学习启发式和重要的CSP。我们的方法表现优于先验的神经组合优化的方法。它可以在测试实例上与常规搜索启发式竞争,甚至可以改善几个数量级,结构上比训练中看到的数量级更为复杂。
translated by 谷歌翻译
组合优化是运营研究和计算机科学领域的一个公认领域。直到最近,它的方法一直集中在孤立地解决问题实例,而忽略了它们通常源于实践中的相关数据分布。但是,近年来,人们对使用机器学习,尤其是图形神经网络(GNN)的兴趣激增,作为组合任务的关键构件,直接作为求解器或通过增强确切的求解器。GNN的电感偏差有效地编码了组合和关系输入,因为它们对排列和对输入稀疏性的意识的不变性。本文介绍了对这个新兴领域的最新主要进步的概念回顾,旨在优化和机器学习研究人员。
translated by 谷歌翻译
Perturb-and-MAP offers an elegant approach to approximately sample from an energy-based model (EBM) by computing the maximum-a-posteriori (MAP) configuration of a perturbed version of the model. Sampling in turn enables learning. However, this line of research has been hindered by the general intractability of the MAP computation. Very few works venture outside tractable models, and when they do, they use linear programming approaches, which as we show, have several limitations. In this work, we present perturb-and-max-product (PMP), a parallel and scalable mechanism for sampling and learning in discrete EBMs. Models can be arbitrary as long as they are built using tractable factors. We show that (a) for Ising models, PMP is orders of magnitude faster than Gibbs and Gibbs-with-Gradients (GWG) at learning and generating samples of similar or better quality; (b) PMP is able to learn and sample from RBMs; (c) in a large, entangled graphical model in which Gibbs and GWG fail to mix, PMP succeeds.Preprint. Under review.
translated by 谷歌翻译
近年来,在平衡(超级)图分配算法的设计和评估中取得了重大进展。我们调查了过去十年的实用算法的趋势,用于平衡(超级)图形分区以及未来的研究方向。我们的工作是对先前有关该主题的调查的更新。特别是,该调查还通过涵盖了超图形分区和流算法来扩展先前的调查,并额外关注并行算法。
translated by 谷歌翻译
优化在离散变量上的高度复杂的成本/能源功能是不同科学学科和行业的许多公开问题的核心。一个主要障碍是在硬实例中的某些变量子集之间的出现,导致临界减慢或集体冻结了已知的随机本地搜索策略。通常需要指数计算工作来解冻这种变量,并探索配置空间的其他看不见的区域。在这里,我们通过开发自适应梯度的策略来介绍一个量子启发的非本球非识别蒙特卡罗(NMC)算法,可以有效地学习成本函数的关键实例的几何特征。该信息随行使用,以构造空间不均匀的热波动,用于以各种长度尺度集体未填充变量,规避昂贵的勘探与开发权衡。我们将算法应用于两个最具挑战性的组合优化问题:随机k可满足(K-SAT)附近计算阶段转换和二次分配问题(QAP)。我们在专业的确定性求解器和通用随机求解器上观察到显着的加速和鲁棒性。特别是,对于90%的随机4-SAT实例,我们发现了最佳专用确定性算法无法访问的解决方案,该算法(SP)具有最强的10%实例的解决方案质量的大小提高。我们还通过最先进的通用随机求解器(APT)显示出在最先进的通用随机求解器(APT)上的时间到溶液的两个数量级改善。
translated by 谷歌翻译
关于组合优化的机器学习的最新作品表明,基于学习的方法可以优于速度和性能方面的启发式方法。在本文中,我们考虑了在定向的无环图上找到最佳拓扑顺序的问题,重点是编译器中出现的记忆最小化问题。我们提出了一种基于端到端的机器学习方法,用于使用编码器框架,用于拓扑排序。我们的编码器是一种基于注意力的新图形神经网络体系结构,称为\ emph {topoformer},它使用DAG的不同拓扑转换来传递消息。由编码器产生的节点嵌入被转换为节点优先级,解码器使用这些嵌入,以生成概率分布对拓扑顺序。我们在称为分层图的合成生成图的数据集上训练我们的模型。我们表明,我们的模型的表现优于或在PAR上,具有多个拓扑排序基线,同时在最多2K节点的合成图上明显更快。我们还在一组现实世界计算图上训练和测试我们的模型,显示了性能的改进。
translated by 谷歌翻译
在本文中,我们提出了一种解决网络对齐问题的新算法。它受到了Bayati等人的先前消息传递框架。[2]并包括旨在显着加快消息更新以及强制增长的修改。实验表明,我们所提出的模型优于其他最先进的求解器。最后,我们建议应用我们的方法,以解决二元困难问题。我们展示我们的解决方案提供的优于几乎所有提交的实例的参考,并概述了利用二进制程序的图形结构的重要性。
translated by 谷歌翻译
Steiner树问题(STP)在图中旨在在连接给定的顶点集的图表中找到一个最小权重的树。它是一种经典的NP - 硬组合优化问题,具有许多现实世界应用(例如,VLSI芯片设计,运输网络规划和无线传感器网络)。为STP开发了许多精确和近似算法,但它们分别遭受高计算复杂性和弱案例解决方案保证。还开发了启发式算法。但是,它们中的每一个都需要应用域知识来设计,并且仅适用于特定方案。最近报道的观察结果,同一NP-COLLECLIAL问题的情况可能保持相同或相似的组合结构,但主要在其数据中不同,我们调查将机器学习技术应用于STP的可行性和益处。为此,我们基于新型图形神经网络和深增强学习设计了一种新型模型瓦坎。 Vulcan的核心是一种新颖的紧凑型图形嵌入,将高瞻度图形结构数据(即路径改变信息)转换为低维矢量表示。鉴于STP实例,Vulcan使用此嵌入来对其路径相关的信息进行编码,并基于双层Q网络(DDQN)将编码的图形发送到深度加强学习组件,以找到解决方案。除了STP之外,Vulcan还可以通过将解决方案(例如,SAT,MVC和X3C)来减少到STP来找到解决方案。我们使用现实世界和合成数据集进行广泛的实验,展示了vulcan的原型,并展示了它的功效和效率。
translated by 谷歌翻译
Deep learning-based approaches have been developed to solve challenging problems in wireless communications, leading to promising results. Early attempts adopted neural network architectures inherited from applications such as computer vision. They often yield poor performance in large scale networks (i.e., poor scalability) and unseen network settings (i.e., poor generalization). To resolve these issues, graph neural networks (GNNs) have been recently adopted, as they can effectively exploit the domain knowledge, i.e., the graph topology in wireless communications problems. GNN-based methods can achieve near-optimal performance in large-scale networks and generalize well under different system settings, but the theoretical underpinnings and design guidelines remain elusive, which may hinder their practical implementations. This paper endeavors to fill both the theoretical and practical gaps. For theoretical guarantees, we prove that GNNs achieve near-optimal performance in wireless networks with much fewer training samples than traditional neural architectures. Specifically, to solve an optimization problem on an $n$-node graph (where the nodes may represent users, base stations, or antennas), GNNs' generalization error and required number of training samples are $\mathcal{O}(n)$ and $\mathcal{O}(n^2)$ times lower than the unstructured multi-layer perceptrons. For design guidelines, we propose a unified framework that is applicable to general design problems in wireless networks, which includes graph modeling, neural architecture design, and theory-guided performance enhancement. Extensive simulations, which cover a variety of important problems and network settings, verify our theory and the effectiveness of the proposed design framework.
translated by 谷歌翻译
回溯搜索算法通常用于解决约束满足问题(CSP)。回溯搜索的效率在很大程度上取决于可变排序启发式。目前,最常用的启发式是根据专家知识进行手工制作的。在本文中,我们提出了一种基于深度的加强学习方法,可以自动发现新的变量订购启发式,更好地适用于给定类CSP实例。我们显示,直接优化搜索成本很难用于自动启动,并建议优化在搜索树中到达叶节点的预期成本。为了捕获变量和约束之间的复杂关系,我们设计基于图形神经网络的表示方案,可以处理具有不同大小和约束的CSP实例。随机CSP实例上的实验结果表明,学习的政策在最小化搜索树大小的方面优于古典手工制作的启发式,并且可以有效地推广到比训练中使用的实例。
translated by 谷歌翻译
This paper surveys the recent attempts, both from the machine learning and operations research communities, at leveraging machine learning to solve combinatorial optimization problems. Given the hard nature of these problems, state-of-the-art algorithms rely on handcrafted heuristics for making decisions that are otherwise too expensive to compute or mathematically not well defined. Thus, machine learning looks like a natural candidate to make such decisions in a more principled and optimized way. We advocate for pushing further the integration of machine learning and combinatorial optimization and detail a methodology to do so. A main point of the paper is seeing generic optimization problems as data points and inquiring what is the relevant distribution of problems to use for learning on a given task.
translated by 谷歌翻译
我们考虑在线性符号间干扰通道上使用因子图框架的符号检测的应用。基于Ungerboeck观察模型,可以得出具有吸引人复杂性能的检测算法。但是,由于基础因子图包含循环,因此总和算法(SPA)产生了次优算法。在本文中,我们制定并评估有效的策略,以通过神经增强来提高基于因子图的符号检测的性能。特别是,我们将因子节点的神经信念传播和概括是减轻因子图内周期效应的有效方法。通过将通用预处理器应用于通道输出,我们提出了一种简单的技术来改变每个SPA迭代中的基本因子图。使用这种动态因子图跃迁,我们打算保留水疗消息的外在性质,否则由于周期而受到损害。仿真结果表明,所提出的方法可以大大改善检测性能,甚至可以在各种传输方案中接近最大后验性能,同时保留在块长度和通道内存中线性线性的复杂性。
translated by 谷歌翻译
用于图形组合优化问题的神经网络溶剂的端到端培训,例如旅行销售人员问题(TSP)最近看到了感兴趣的激增,但在几百节节点的图表中保持棘手和效率低下。虽然最先进的学习驱动的方法对于TSP在培训的古典索引时与古典求解器密切相关,但它们无法通过实际尺度的实际情况概括到更大的情况。这项工作提出了一个端到端的神经组合优化流水线,统一几个卷纸,以确定促进比在训练中看到的实例的概括的归纳偏差,模型架构和学习算法。我们的受控实验提供了第一个原则上调查这种零拍摄的概括,揭示了超越训练数据的推断需要重新思考从网络层和学习范例到评估协议的神经组合优化流水线。此外,我们分析了深入学习的最近进步,通过管道的镜头路由问题,并提供新的方向,以刺激未来的研究。
translated by 谷歌翻译
该博士学位论文的中心对象是在计算机科学和统计力学领域的不同名称中以不同名称而闻名的。在计算机科学中,它被称为“最大切割问题”,这是著名的21个KARP的原始NP硬性问题之一,而物理学的相同物体称为Ising Spin Glass模型。这种丰富的结构的模型通常是减少或重新制定计算机科学,物理和工程学的现实问题。但是,准确地求解此模型(查找最大剪切或基态)可能会留下一个棘手的问题(除非$ \ textit {p} = \ textit {np} $),并且需要为每一个开发临时启发式学特定的实例家庭。离散和连续优化之间的明亮而美丽的连接之一是一种基于半限定编程的圆形方案,以最大程度地切割。此过程使我们能够找到一个近乎最佳的解决方案。此外,该方法被认为是多项式时间中最好的。在本论文的前两章中,我们研究了旨在改善舍入方案的局部非凸照。在本文的最后一章中,我们迈出了一步,并旨在控制我们想要在前几章中解决的问题的解决方案。我们在Ising模型上制定了双层优化问题,在该模型中,我们希望尽可能少地调整交互作用,以使所得ISING模型的基态满足所需的标准。大流行建模出现了这种问题。我们表明,当相互作用是非负的时,我们的双层优化是在多项式时间内使用凸编程来解决的。
translated by 谷歌翻译
在过去的几年中,已经开发了图形绘图技术,目的是生成美学上令人愉悦的节点链接布局。最近,利用可区分损失功能的使用已为大量使用梯度下降和相关优化算法铺平了道路。在本文中,我们提出了一个用于开发图神经抽屉(GND)的新框架,即依靠神经计算来构建有效且复杂的图的机器。 GND是图形神经网络(GNN),其学习过程可以由任何提供的损失函数(例如图形图中通常使用的损失函数)驱动。此外,我们证明,该机制可以由通过前馈神经网络计算的损失函数来指导,并根据表达美容特性的监督提示,例如交叉边缘的最小化。在这种情况下,我们表明GNN可以通过位置功能很好地丰富与未标记的顶点处理。我们通过为边缘交叉构建损失函数来提供概念验证,并在提议的框架下工作的不同GNN模型之间提供定量和定性的比较。
translated by 谷歌翻译
近年来,线性分配问题(LAP)的可分解求解器(LAP)引起了很多研究的关注,通常嵌入到学习框架中作为组件。然而,以前的算法,有或没有学习策略,通常随着问题大小的增量而遭受最优性的降低。在本文中,我们提出了一种基于深图网络的学习线性分配求解器。具体地,我们首先将成本矩阵转换为二分图,并将分配任务转换为从构造的图表中选择可靠的边缘的问题。随后,开发了深图网络以聚合和更新节点和边的特征。最后,网络预测指示指示赋值关系的每个边缘的标签。合成数据集的实验结果表明,我们的方法优于最先进的基线,并以问题尺寸的增量达到始终如一的高精度。此外,我们还与最先进的基线求解器相比,嵌入了所提出的求解器,进入流行的多目标跟踪(MOT)框架,以以端到端的方式训练跟踪器。 MOT基准的实验结果表明,所提出的LAP解算器通过最大的边缘改善跟踪器。
translated by 谷歌翻译