Cuspidal机器人是具有至少两种逆运动溶液的机器人,可以通过无奇异路径连接。过去已经研究了普通3R机器人的尖锐性,但是将研究扩展到六度自由的机器人可能是一个具有挑战性的问题。许多机器人可以与真实代数集一起建模为多项式图,以便将尖的概念扩展到这些数据。在本文中,我们设计了一种算法,该算法在输入$ n $不确定的多项式地图上,而$ s $多项式在相同的不确定的情况下描述了一个真实的代数$ d $,请确定地图限制的限制性正在考虑的实际代数设定。此外,如果$ d $和$ \ \ tau $分别是输入多项式系数的最高学位和界限,则该算法在$ \ tau $中以$ \ tau $和$($( (s+d)d)^{o(n^2)} $。它依赖于计算机代数中的许多高级算法,这些算法在真实代数集和多项式图的关键基因座上使用高级方法。据我们所知,这是第一种从一般角度解决尖锐性问题的算法。
translated by 谷歌翻译
We study the problem of finding elements in the intersection of an arbitrary conic variety in $\mathbb{F}^n$ with a given linear subspace (where $\mathbb{F}$ can be the real or complex field). This problem captures a rich family of algorithmic problems under different choices of the variety. The special case of the variety consisting of rank-1 matrices already has strong connections to central problems in different areas like quantum information theory and tensor decompositions. This problem is known to be NP-hard in the worst-case, even for the variety of rank-1 matrices. Surprisingly, despite these hardness results we give efficient algorithms that solve this problem for "typical" subspaces. Here, the subspace $U \subseteq \mathbb{F}^n$ is chosen generically of a certain dimension, potentially with some generic elements of the variety contained in it. Our main algorithmic result is a polynomial time algorithm that recovers all the elements of $U$ that lie in the variety, under some mild non-degeneracy assumptions on the variety. As corollaries, we obtain the following results: $\bullet$ Uniqueness results and polynomial time algorithms for generic instances of a broad class of low-rank decomposition problems that go beyond tensor decompositions. Here, we recover a decomposition of the form $\sum_{i=1}^R v_i \otimes w_i$, where the $v_i$ are elements of the given variety $X$. This implies new algorithmic results even in the special case of tensor decompositions. $\bullet$ Polynomial time algorithms for several entangled subspaces problems in quantum entanglement, including determining $r$-entanglement, complete entanglement, and genuine entanglement of a subspace. While all of these problems are NP-hard in the worst case, our algorithm solves them in polynomial time for generic subspaces of dimension up to a constant multiple of the maximum possible.
translated by 谷歌翻译
我们研究由线性卷积神经网络(LCN)代表的功能家族。这些函数形成了从输入空间到输出空间的线性地图集的半代数子集。相比之下,由完全连接的线性网络表示的函数家族形成代数集。我们观察到,LCN代表的功能可以通过接受某些因素化的多项式来识别,我们使用此视角来描述网络体系结构对所得功能空间几何形状的影响。我们进一步研究了在LCN上的目标函数的优化,分析了功能空间和参数空间中的临界点,并描述了梯度下降的动态不变性。总体而言,我们的理论预测,LCN的优化参数通常对应于跨层的重复过滤器,或可以分解为重复过滤器的过滤器。我们还进行了数值和符号实验,以说明我们的结果,并对小体系结构的景​​观进行深入分析。
translated by 谷歌翻译
从运动的结构问题涉及从一组二维图像中恢复对象的三维结构。通常,如果提供了足够的图像和图像点,则所有信息都可以唯一恢复,但是存在唯一恢复的某些情况是不可能的;这些称为关键配置。在本文中,我们使用代数方法来研究三个投影相机的关键配置。我们表明,所有关键配置都位于二次曲面的交叉点上,并究竟分类了哪个交叉点构成关键配置。
translated by 谷歌翻译
本文通过引入几何深度学习(GDL)框架来构建通用馈电型型模型与可区分的流形几何形状兼容的通用馈电型模型,从而解决了对非欧国人数据进行处理的需求。我们表明,我们的GDL模型可以在受控最大直径的紧凑型组上均匀地近似任何连续目标函数。我们在近似GDL模型的深度上获得了最大直径和上限的曲率依赖性下限。相反,我们发现任何两个非分类紧凑型歧管之间始终都有连续的函数,任何“局部定义”的GDL模型都不能均匀地近似。我们的最后一个主要结果确定了数据依赖性条件,确保实施我们近似的GDL模型破坏了“维度的诅咒”。我们发现,任何“现实世界”(即有限)数据集始终满足我们的状况,相反,如果目标函数平滑,则任何数据集都满足我们的要求。作为应用,我们确认了以下GDL模型的通用近似功能:Ganea等。 (2018)的双波利馈电网络,实施Krishnan等人的体系结构。 (2015年)的深卡尔曼 - 滤波器和深度玛克斯分类器。我们构建了:Meyer等人的SPD-Matrix回归剂的通用扩展/变体。 (2011)和Fletcher(2003)的Procrustean回归剂。在欧几里得的环境中,我们的结果暗示了Kidger和Lyons(2020)的近似定理和Yarotsky和Zhevnerchuk(2019)无估计近似率的数据依赖性版本的定量版本。
translated by 谷歌翻译
我们考虑从有限许多支持功能评估中重建具有固定面部方向的多部位的任务。我们表明,对于固定的单一规范风扇,由凸二次程序给出最小二乘估计。我们研究了解决方案集的几何形状,并在这种情况下为重建的唯一性提供了组合特征。我们提供一种算法,在温和的假设下会聚到未知的输入形状,因为噪声支持函数评估的数量增加。如果拆除了对正常风扇的限制,我们还讨论了我们结果的限制。
translated by 谷歌翻译
让F:R ^ N - > R是前馈RELU神经网络。众所周知,对于任何选择参数,F是连续和分段(仿射)线性的。我们为有系统调查提供了一些基础,用于系统的架构如何影响其可能的决策区域的几何和拓扑以进行二进制分类任务。在差分拓扑中顺利函数的经典进展之后,我们首先定义通用,横向relu神经网络的概念,并显示几乎所有的Relu网络都是通用的和横向的。然后,我们在F的域中定义了一个部分取向的线性1-复合物,并识别该复合物的属性,从而产生妨碍决策区域的有界连接分量的障碍物。我们使用该阻塞来证明具有单个隐藏的尺寸层(N + 1)的通用横向Relu网络F:R ^ N - > R的决策区域可以不具有多于一个有界连接的组件。
translated by 谷歌翻译
我们有助于更好地理解由具有Relu激活和给定架构的神经网络表示的功能。使用来自混合整数优化,多面体理论和热带几何的技术,我们为普遍近似定理提供了数学逆向,这表明单个隐藏层足以用于学习任务。特别是,我们调查完全可增值功能是否完全可以通过添加更多层(没有限制大小)来严格增加。由于它为神经假设类别代表的函数类提供给算法和统计方面,这个问题对算法和统计方面具有潜在的影响。然而,据我们所知,这个问题尚未在神经网络文学中调查。我们还在这些神经假设类别中代表功能所需的神经网络的大小上存在上限。
translated by 谷歌翻译
我们回答以下问题,哪些结合性查询以多种方式上的许多正和负面示例以及如何有效地构建此类示例的特征。结果,我们为一类连接的查询获得了一种新的有效的精确学习算法。我们的贡献的核心是两种新的多项式时间算法,用于在有限结构的同态晶格中构建前沿。我们还讨论了模式映射和描述逻辑概念的独特特征性和可学习性的影响。
translated by 谷歌翻译
我们给出了\ emph {list-codobable协方差估计}的第一个多项式时间算法。对于任何$ \ alpha> 0 $,我们的算法获取输入样本$ y \ subseteq \ subseteq \ mathbb {r}^d $ size $ n \ geq d^{\ mathsf {poly}(1/\ alpha)} $获得通过对抗损坏I.I.D的$(1- \ alpha)n $点。从高斯分布中的样本$ x $ size $ n $,其未知平均值$ \ mu _*$和协方差$ \ sigma _*$。在$ n^{\ mathsf {poly}(1/\ alpha)} $ time中,它输出$ k = k(\ alpha)=(1/\ alpha)^{\ mathsf {poly}的常数大小列表(1/\ alpha)} $候选参数,具有高概率,包含$(\ hat {\ mu},\ hat {\ sigma})$,使得总变化距离$ tv(\ Mathcal {n}(n})(n}(n})( \ mu _*,\ sigma _*),\ Mathcal {n}(\ hat {\ mu},\ hat {\ sigma}))<1-o _ {\ alpha}(1)$。这是距离的统计上最强的概念,意味着具有独立尺寸误差的参数的乘法光谱和相对Frobenius距离近似。我们的算法更普遍地适用于$(1- \ alpha)$ - 任何具有低度平方总和证书的分布$ d $的损坏,这是两个自然分析属性的:1)一维边际和抗浓度2)2度多项式的超收缩率。在我们工作之前,估计可定性设置的协方差的唯一已知结果是针对Karmarkar,Klivans和Kothari(2019),Raghavendra和Yau(2019和2019和2019和2019和2019年)的特殊情况。 2020年)和巴克西(Bakshi)和科塔里(Kothari)(2020年)。这些结果需要超级物理时间,以在基础维度中获得任何子构误差。我们的结果意味着第一个多项式\ emph {extcect}算法,用于列表可解码的线性回归和子空间恢复,尤其允许获得$ 2^{ - \ Mathsf { - \ Mathsf {poly}(d)} $多项式时间错误。我们的结果还意味着改进了用于聚类非球体混合物的算法。
translated by 谷歌翻译
众所周知,具有重新激活函数的完全连接的前馈神经网络可以表示的参数化函数家族恰好是一类有限的分段线性函数。鲜为人知的是,对于Relu神经网络的每个固定架构,参数空间都允许对称的正维空间,因此,在任何给定参数附近的局部功能维度都低于参数维度。在这项工作中,我们仔细地定义了功能维度的概念,表明它在Relu神经网络函数的参数空间中是不均匀的,并继续进行[14]和[5]中的调查 - 何时在功能维度实现其理论时最大。我们还研究了从参数空间到功能空间的实现图的商空间和纤维,提供了断开连接的纤维的示例,功能尺寸为非恒定剂的纤维以及对称组在其上进行非转换的纤维。
translated by 谷歌翻译
我们提供了悖论性的闭环$ n $ linkages的完整分类,其中$ n \ geq6 $的移动性$ n-4 $或更高版本包含revolute,Prismatic或Helical关节。我们还明确地写下了$ nr $ links $ n-5 $的$ nr $链接的强大必要条件。我们的主要新工具是链接$ l $与另一个链接$ l'$之间的几何关系,这是由于将方程式添加到$ l $的配置空间而产生的。然后,我们使用此关系提高了$ l'ub $ $ l $的已知分类结果。
translated by 谷歌翻译
我们考虑测定点过程(DPP)的产物,该点过程,其概率质量与多矩阵的主要成本的产物成比例,作为DPP的天然有希望的推广。我们研究计算其归一化常量的计算复杂性,这是最重要的概率推理任务。我们的复杂性 - 理论结果(差不多)排除了该任务的有效算法的存在,除非输入矩阵被迫具有有利的结构。特别是,我们证明了以下内容:(1)计算$ \ sum_s \ det({\ bf a} _ {s,s,s})^ p $完全针对每个(固定)阳性甚至整数$ p $ up-hard和Mod $ _3 $ p-hard,它给Kulesza和Taskar提出的打开问题给出了否定答案。 (2)$ \ sum_s \ det({\ bf a} _ {s,s})\ det({\ bf b} _ {s,s})\ det({\ bf c} _ {s,s} )$ IS难以在2 ^ {o(| i | i | ^ {1- \ epsilon})} $或$ 2 ^ {o(n ^ {1 / epsilon})} $的任何一个$ \ epsilon> 0 $,其中$ | i | $是输入大小,$ n $是输入矩阵的顺序。这种结果比Gillenwater导出的两个矩阵的#P硬度强。 (3)有$ k ^ {o(k)} n ^ {o(1)} $ - 计算$ \ sum_s \ det的时间算法({\ bf a} _ {s,s})\ det( {\ bf b} _ {s,s})$,其中$ k $是$ \ bf a $和$ \ bf b $的最大等级,或者由$ \ bf a $的非零表项形成的图表的树宽和$ \ bf b $。据说这种参数化算法是固定参数的易解。这些结果可以扩展到固定尺寸的情况。此外,我们介绍了两个固定参数批量算法的应用程序给定矩阵$ \ bf a $ treewidth $ w $:(4)我们可以计算$ 2 ^ {\ frac {n} {2p-1} $ - 近似值到$ \ sum_s \ det({\ bf a} _ {s,s})^ p $ for任何分数$ p> 1 $以$ w ^ {o(wp)} n ^ {o(1)} $时间。 (5)我们可以在$ w ^ {o(w \ sqrt n)} n ^ {
translated by 谷歌翻译
从运动的结构问题涉及从一组二维图像中恢复对象的三维结构。通常,如果提供了足够的图像和图像点,则可以唯一地恢复所有信息,但是存在唯一恢复的情况下是不可能的情况;这些称为关键配置。在本文中,我们使用代数方法来研究两个投影相机的关键配置。我们表明,所有关键配置都位于二次表面上,并确切地分类哪个Quadrics构成关键配置。本文还描述了当独特的重建不可能时不同重建之间的关系。
translated by 谷歌翻译
我们检查机器学习中出现的组合概念与立方/单纯几何形状中的拓扑概念之间的连接。这些连接使得从几何形状导出到机器学习的结果。我们的第一个主要结果是基于Tracy Hall(2004)的几何结构,其局部炮击的交叉多容院不能延伸。我们使用它来得出最大类别的VC尺寸3,没有角落。从过去11年来,这反驳了在机器学习中的几个工作。特别地,它意味着最佳类别的最佳未标记的样本压缩方案的所有先前结构都是错误的。在积极的一面,我们为最大类提供了一个未标记的样品压缩方案的新建。我们打开我们的未标记的样品压缩方案是否延伸到充足(A.K.A.不平衡或极值)课程,这代表了最大类的自然和深远的概括。在解决这个问题方面,我们就关联立方体复合物的1骷髅的独特宿前方向提供了几何特征。
translated by 谷歌翻译
我们研究了与给定的无向图$ g $相对应的图形模型的最大似然估计的问题。我们表明,最大似然估计(MLE)是几个帐篷函数的指数的乘积,每个最大集团的$ g $。虽然图形模型中的一组对数符号密度是无限维度的,但我们的结果表明,可以通过求解有限维凸优化问题来找到MLE。我们提供实施和一些示例。此外,我们证明MLE存在并且具有概率为1,只要样品数量大于$ g $ chordal时最大的$ g $集团的大小。我们证明,当图$ g $是集团的不交联时,MLE是一致的。最后,我们讨论了$ g $的图形模型中的对数 - 串联密度在$ g $中具有对数符号分解的条件。
translated by 谷歌翻译
数据驱动的算法可以通过从输入的训练样本中学习,可以使其内部结构或参数适应来自未知应用程序特定分布的输入。最近的一些作品将这种方法应用于数值线性代数中的问题,获得了绩效的显着经验增长。然而,尚无理论上的成功解释。在这项工作中,我们证明了这些算法的概括范围,在Gupta和Roughgarden提出的数据驱动算法选择的PAC学习框架内(Sicomp 2017)。我们的主要结果与Indyk等人的基于学习的低级近似算法的脂肪破碎维度紧密匹配(Neurips 2019)。我们的技术是一般的,并为数值线性代数中的许多其他最近提出的数据驱动算法提供了概括,涵盖了基于草图的基于草图的方法和基于多机的方法。这大大扩展了可用的PAC学习分析的数据驱动算法类别。
translated by 谷歌翻译
连续约束满意度问题(CCSP)是一个约束满意度问题(CSP),其间隔域$ u \ subset \ mathbb {r} $。我们进行了一项系统的研究,以对CCSP进行分类,这些CCSP已完成现实的存在理论,即ER完整。为了定义该类别,我们首先考虑ETR问题,该问题也代表了真实的存在理论。在此问题的情况下,我们给出了$ \ compant x_1,\ ldots,x_n \ in \ mathbb {r}的某个句子:\ phi(x_1,\ ldots,x_n)$,其中$ \ phi $ is由符号$ \ {0、1, +,\ cdot,\ geq,>,\ wedge,\ vee,\ neg \} $组成的符号符号的公式正确。 。现在,ER是所有问题的家族,这些家族允许多项式时间降低到ETR。众所周知,np $ \ subseteq $ er $ \ subseteq $ pspace。我们将注意力限制在CCSP上,并具有附加限制($ x + y = z $)和其他一些轻度的技术状况。以前,已经显示出乘法约束($ x \ cdot y = z $),平方约束($ x^2 = y $)或反转约束($ x \ cdot y = 1 $)足以建立ER-完整性。如下所示,我们以最大的平等约束来扩展这一点。我们表明,CCSP(具有附加限制和其他轻度技术状况)具有任何一个表现良好的弯曲平等约束($ f(x,y)= 0 $)的CCSP是ER的曲线限制($ F(x,y)= 0 $)。我们将结果进一步扩展到不平等约束。我们表明,任何行为良好的凸出弯曲且行为良好的凹陷弯曲的不平等约束($ f(x,y)\ geq 0 $ and $ g(x,x,y)\ geq 0 $)暗示着班级的ER完整性这种CCSP。
translated by 谷歌翻译
我们介绍了可以由具有Maxout单位的人造馈电神经网络表示的功能线性区域的数量。排名kaxout单元是一个函数,计算$ k $线性函数的最大值。对于具有单层Maxout单元的网络,线性区域对应于Minkowski多型的上顶点。我们根据热带超曲面的交点或部分Minkowski总和的上面数,以及任何输入维度的区域数,任何单位数量,任何等级,任何等级,任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,以及任何等级,在有和没有偏见的情况下。基于这些结果,我们还为具有多层的网络获得了渐近的上限。
translated by 谷歌翻译
同态传感是一个最近的代数几何框架,它在给定的线性图集合中研究了线性子空间中点的独特恢复。在坐标投影组成的情况下,它已经成功地解释了这种恢复,这是被称为未标记感应的应用程序中的重要实例,其中模拟了不秩序不正确且缺少值的数据。在本文中,我们提供更严格,更简单的条件,以保证单个空格情况的唯一恢复,将结果扩展到子空间布置的情况,并证明单个子空间中的唯一恢复在噪声下是本地稳定的。我们将结果专注于几个同态感测的示例,例如真实的相位检索和未标记的传感。在这样做的情况下,我们以统一的方式获得了保证这些示例的独特恢复的条件,这些示例通常是通过文献中的各种技术来知道的,以及用于稀疏和未签名版本的未标记感应的新颖条件。同样,我们的噪声结果也意味着未标记的传感中的独特恢复在局部稳定。
translated by 谷歌翻译