We consider the decentralized exploration problem: a set of players collaborate to identify the best arm by asynchronously interacting with the same stochastic environment. The objective is to insure privacy in the best arm identification problem between asynchronous, collaborative, and thrifty players. In the context of a digital service, we advocate that this decentralized approach allows a good balance between the interests of users and those of service providers: the providers optimize their services, while protecting the privacy of the users and saving resources. We define the privacy level as the amount of information an adversary could infer by intercepting the messages concerning a single user. We provide a generic algorithm Decentralized Elimination, which uses any best arm identification algorithm as a subroutine. We prove that this algorithm insures privacy, with a low communication cost, and that in comparison to the lower bound of the best arm identification problem, its sample complexity suffers from a penalty depending on the inverse of the probability of the most frequent players. Then, thanks to the genericity of the approach, we extend the proposed algorithm to the non-stationary bandits. Finally, experiments illustrate and complete the analysis.
translated by 谷歌翻译
Due mostly to its application to cognitive radio networks, multiplayer bandits gained a lot of interest in the last decade. A considerable progress has been made on its theoretical aspect. However, the current algorithms are far from applicable and many obstacles remain between these theoretical results and a possible implementation of multiplayer bandits algorithms in real cognitive radio networks. This survey contextualizes and organizes the rich multiplayer bandits literature. In light of the existing works, some clear directions for future research appear. We believe that a further study of these different directions might lead to theoretical algorithms adapted to real-world situations.
translated by 谷歌翻译
We study the best-arm identification problem in multi-armed bandits with stochastic, potentially private rewards, when the goal is to identify the arm with the highest quantile at a fixed, prescribed level. First, we propose a (non-private) successive elimination algorithm for strictly optimal best-arm identification, we show that our algorithm is $\delta$-PAC and we characterize its sample complexity. Further, we provide a lower bound on the expected number of pulls, showing that the proposed algorithm is essentially optimal up to logarithmic factors. Both upper and lower complexity bounds depend on a special definition of the associated suboptimality gap, designed in particular for the quantile bandit problem, as we show when the gap approaches zero, best-arm identification is impossible. Second, motivated by applications where the rewards are private, we provide a differentially private successive elimination algorithm whose sample complexity is finite even for distributions with infinite support-size, and we characterize its sample complexity. Our algorithms do not require prior knowledge of either the suboptimality gap or other statistical information related to the bandit problem at hand.
translated by 谷歌翻译
我们考虑一个完全分散的多人多手随机多武装匪盗匪徒,其中玩家不能互相通信,并且只能观察自己的行为和奖励。环境可能与不同的播放器不同,$ \ texit {i.e.} $,给定臂的奖励分布在球员之间是异构的。在碰撞的情况下(当多个玩家播放相同的手臂时),我们允许碰撞玩家接收非零奖励。播放武器的时间 - 地平线$ t $是\ emph {否}对玩家已知。在此设置中,允许玩家的数量大于武器的数量,我们展示了一项达到订单优化预期令人遗憾的政策$ O(\ log ^ {1 + delta} t)$有些$ 0 <\ delta <1 $超过时间的时间$ t $。IEEE关于信息理论的交易中接受了本文。
translated by 谷歌翻译
我们研究了多人多武装匪徒的信息共享与合作问题。我们提出了第一个算法,实现了这个问题的对数遗憾。我们的结果基于两项创新。首先,我们表明对连续消除策略的简单修改可用于允许玩家在没有碰撞的情况下估计它们的子项货间隙,直到恒定因素。其次,我们利用第一个结果来设计一种成功使用碰撞的小额奖励来协调玩家之间的通信协议,同时保留有意义的实例依赖性对数后悔保证。
translated by 谷歌翻译
通信瓶颈和数据隐私是联邦多武装强盗(MAB)问题中的两个至关重要的问题,例如通过无线连接车辆的决策和建议的情况。在本文中,我们在这些问题中设计了隐私保留的通信有效的算法,并在遗憾方面研究隐私,沟通和学习绩效之间的互动。具体而言,我们设计隐私保留的学习算法和通信协议,并在网络私人代理在主工作人员,分散和混合结构中进行在线强盗学习时,从而导出学习遗憾。我们的强盗学习算法基于每个代理和代理在每个时代结束时与服务器/彼此交换学习知识的庞大的子最优手臂。此外,我们采用差异隐私(DP)方法在交换信息时保护每个代理人的数据隐私;并且我们通过减少频繁的沟通与较少的代理商参与来缩短沟通成本。通过分析我们拟议的算法框架,在硕士劳动,分散和混合结构中的暗示框架,理论上显示了遗憾和沟通成本/隐私之间的权衡。最后,我们经验展示了与我们理论分析一致的这些权衡。
translated by 谷歌翻译
本文调查$ \纺织品{污染} $随机多臂爆炸中最佳臂识别问题。在此设置中,从任何臂获得的奖励由来自概率$ \ varepsilon $的对抗性模型的样本所取代。考虑了固定的置信度(无限地平线)设置,其中学习者的目标是识别最大的平均值。由于奖励的对抗污染,每个ARM的平均值仅部分可识别。本文提出了两种算法,基于连续消除的基于间隙的算法和一个,以便在亚高斯匪徒中最佳臂识别。这些算法涉及平均估计,从渐近估计的估计值达到真实均值的偏差上实现最佳误差保证。此外,这些算法渐近地实现了最佳的样本复杂性。具体地,对于基于差距的算法,样本复杂性呈渐近最佳到恒定因子,而对于基于连续的基于算法,​​它是最佳的对数因子。最后,提供了数值实验以说明与现有基线相比的算法的增益。
translated by 谷歌翻译
Multi-player multi-armed bandit is an increasingly relevant decision-making problem, motivated by applications to cognitive radio systems. Most research for this problem focuses exclusively on the settings that players have \textit{full access} to all arms and receive no reward when pulling the same arm. Hence all players solve the same bandit problem with the goal of maximizing their cumulative reward. However, these settings neglect several important factors in many real-world applications, where players have \textit{limited access} to \textit{a dynamic local subset of arms} (i.e., an arm could sometimes be ``walking'' and not accessible to the player). To this end, this paper proposes a \textit{multi-player multi-armed walking bandits} model, aiming to address aforementioned modeling issues. The goal now is to maximize the reward, however, players can only pull arms from the local subset and only collect a full reward if no other players pull the same arm. We adopt Upper Confidence Bound (UCB) to deal with the exploration-exploitation tradeoff and employ distributed optimization techniques to properly handle collisions. By carefully integrating these two techniques, we propose a decentralized algorithm with near-optimal guarantee on the regret, and can be easily implemented to obtain competitive empirical performance.
translated by 谷歌翻译
We study the problem of preserving privacy while still providing high utility in sequential decision making scenarios in a changing environment. We consider abruptly changing environment: the environment remains constant during periods and it changes at unknown time instants. To formulate this problem, we propose a variant of multi-armed bandits called non-stationary stochastic corrupt bandits. We construct an algorithm called SW-KLUCB-CF and prove an upper bound on its utility using the performance measure of regret. The proven regret upper bound for SW-KLUCB-CF is near-optimal in the number of time steps and matches the best known bound for analogous problems in terms of the number of time steps and the number of changes. Moreover, we present a provably optimal mechanism which can guarantee the desired level of local differential privacy while providing high utility.
translated by 谷歌翻译
合作匪徒问题越来越多地成为其在大规模决策中的应用。然而,对此问题的大多数研究专注于具有完美通信的环境,而在大多数现实世界分布式设置中,通信通常是随机网络,具有任意损坏和延迟。在本文中,我们在三个典型的真实沟通场景下研究了合作匪徒学习,即(a)通过随机时变网络的消息传递,(b)通过随机延迟的网络瞬时奖励共享(c )通过对冲损坏的奖励来传递消息,包括拜占庭式沟通。对于每个环境中的每一个,我们提出了实现竞争性能的分散算法,以及在发生的群体后悔的近乎最佳保证。此外,在具有完美通信的环境中,我们提出了一种改进的延迟更新算法,其优于各种网络拓扑的现有最先进的算法。最后,我们在集团后悔呈现紧密的网络依赖性最低限度。我们所提出的算法很简单,以实现和获得竞争性的经验性能。
translated by 谷歌翻译
土匪算法已成为交互式建议的参考解决方案。但是,由于这种算法直接与用户进行改进的建议,因此对其实际使用提出了严重的隐私问题。在这项工作中,我们通过基于树的机制提出了一种差异性的线性上下文匪徒算法,以将拉普拉斯或高斯噪声添加到模型参数中。我们的关键见解是,随着模型在在线更新过程中收敛时,其参数的全局灵敏度随着时间的推移而缩小(因此命名为动态全局灵敏度)。与现有解决方案相比,我们动态的全球敏感性分析使我们能够减少噪声以获得$(\ epsilon,\ delta)$ - 差异隐私,并具有$ \ tilde o(\ log {t} \ sqrt中的噪声注入引起的额外遗憾) {t}/\ epsilon)$。我们通过动态全局灵敏度和我们提出的算法的相应上后悔界限提供了严格的理论分析。合成和现实世界数据集的实验结果证实了该算法对现有解决方案的优势。
translated by 谷歌翻译
我们通过可共享的手臂设置概括了多武器的多臂土匪(MP-MAB)问题,其中几场比赛可以共享同一臂。此外,每个可共享的组都有有限的奖励能力和“每载”奖励分配,这两者都是学习者所不知道的。可共享臂的奖励取决于负载,这是“每载”奖励乘以拉动手臂的戏剧数量或当比赛数量超过容量限制时的奖励能力。当“按负载”奖励遵循高斯分布时,我们证明了样本复杂性的下限,从负载依赖的奖励中学习容量,也遗憾的是这个新的MP-MAB问题的下限。我们设计了一个容量估计器,其样品复杂性上限在奖励手段和能力方面与下限匹配。我们还提出了一种在线学习算法来解决该问题并证明其遗憾的上限。这个遗憾的上界的第一任期与遗憾的下限相同,其第二和第三个术语显然也对应于下边界。广泛的实验验证了我们算法的性能以及其在5G和4G基站选择中的增长。
translated by 谷歌翻译
我们在多机构学习模型中调查了Top-$ m $ ARM标识,这是Bandit理论中的一个基本问题,在该模型中,代理商合作学习目标函数。我们有兴趣设计使用最低沟通成本的协作学习算法,以实现最大的加速(与单人学习算法相比),因为沟通通常是多学院学习中的瓶颈。我们提供算法和不可能的结果,并进行一组实验以证明我们的算法的有效性。
translated by 谷歌翻译
我们考虑了一种有可能无限的武器的随机强盗问题。我们为最佳武器和$ \ delta $的比例写入$ p ^ * $,以获得最佳和次优臂之间的最小含义 - 均值差距。我们在累积遗憾设置中表征了最佳学习率,以及在问题参数$ t $(预算),$ p ^ * $和$ \ delta $的最佳臂识别环境中。为了最大限度地减少累积遗憾,我们提供了订单$ \ OMEGA(\ log(t)/(p ^ * \ delta))$的下限和UCB样式算法,其匹配上限为一个因子$ \ log(1 / \ delta)$。我们的算法需要$ p ^ * $来校准其参数,我们证明了这种知识是必要的,因为在这个设置中调整到$ p ^ * $以来,因此是不可能的。为了获得最佳武器识别,我们还提供了订单$ \ Omega(\ exp(-ct \ delta ^ 2 p ^))的较低限制,以上输出次优臂的概率,其中$ c> 0 $是一个绝对常数。我们还提供了一个消除算法,其上限匹配下限到指数中的订单$ \ log(t)$倍数,并且不需要$ p ^ * $或$ \ delta $ as参数。我们的结果直接适用于竞争$ j $ -th最佳手臂的三个相关问题,识别$ \ epsilon $良好的手臂,并找到一个平均值大于已知订单的大分的手臂。
translated by 谷歌翻译
我们考虑在差异隐私(DP)的分布式信任模型下考虑标准的$ k $武装匪徒问题,该问题使得无需可信赖的服务器保证隐私。在此信任模型下,先前的工作主要集中在使用Shuffle协议实现隐私,在此过程中,在发送到中央服务器之前,将一批用户数据随机排列。通过牺牲额外的添加剂$ o \!\ left(\!\ frac {k \ log t \ sqrt {\ log(1/\ delta)}} } {\ epsilon} \!\ right)\!$在$ t $ - 步骤累积遗憾中成本。相比之下,在广泛使用的中央信托模型下实现更强($ \ epsilon,0 $)或纯dp保证的最佳隐私成本仅为$ \ theta \!\ left(\!\ frac {k \ log t t t } {\ epsilon} \!\ right)\!$,但是,需要一个受信任的服务器。在这项工作中,我们旨在获得分布式信托模型下的纯DP保证,同时牺牲比中央信托模型的遗憾。我们通过基于连续的ARM消除设计通用的匪徒算法来实现这一目标,在这种情况下,通过使用安全的计算协议确保使用等效的离散拉普拉斯噪声来损坏奖励来保证隐私。我们还表明,当使用Skellam噪声和安全协议实例化时,我们的算法可确保\ emph {r \'{e} nyi差异隐私} - 一个比分布式信任模型的近似dp更强的概念$ o \!\ left(\!\ frac {k \ sqrt {\ log t}}}} {\ epsilon} \!\ right)\!$。
translated by 谷歌翻译
上下文强盗算法广泛用于域中,其中期望通过利用上下文信息提供个性化服务,这可能包含需要保护的敏感信息。灵感来自这种情况,我们研究了差异隐私(DP)约束的上下文线性强盗问题。虽然文献专注于集中式(联合DP)或本地(本地DP)隐私,但我们考虑了隐私的洗牌模型,我们表明可以在JDP和LDP之间实现隐私/实用权折衷。通过利用隐私和批处理从匪徒进行洗牌,我们介绍了一个遗憾的遗留率$ \ widetilde {\ mathcal {o}}(t ^ {2/3} / \ varepsilon ^ {1/3})$,同时保证中央(联合)和当地隐私。我们的结果表明,通过利用Shuffle模型在保留本地隐私时,可以在JDP和LDP之间获得权衡。
translated by 谷歌翻译
我们研究了一个顺序决策问题,其中学习者面临$ k $武装的随机匪徒任务的顺序。对手可能会设计任务,但是对手受到限制,以在$ m $ and的较小(但未知)子集中选择每个任务的最佳组。任务边界可能是已知的(强盗元学习设置)或未知(非平稳的强盗设置)。我们设计了一种基于Burnit subsodular最大化的减少的算法,并表明,在大量任务和少数最佳武器的制度中,它在两种情况下的遗憾都比$ \ tilde {o}的简单基线要小。 \ sqrt {knt})$可以通过使用为非平稳匪徒问题设计的标准算法获得。对于固定任务长度$ \ tau $的强盗元学习问题,我们证明该算法的遗憾被限制为$ \ tilde {o}(nm \ sqrt {m \ tau}+n^{2/3} m \ tau)$。在每个任务中最佳武器的可识别性的其他假设下,我们显示了一个带有改进的$ \ tilde {o}(n \ sqrt {m \ tau}+n^{1/2} {1/2} \ sqrt的强盗元学习算法{m k \ tau})$遗憾。
translated by 谷歌翻译
We incorporate statistical confidence intervals in both the multi-armed bandit and the reinforcement learning problems. In the bandit problem we show that given n arms, it suffices to pull the arms a total of O (n/ε 2 ) log(1/δ) times to find an ε-optimal arm with probability of at least 1 − δ. This bound matches the lower bound of Mannor and Tsitsiklis (2004) up to constants. We also devise action elimination procedures in reinforcement learning algorithms. We describe a framework that is based on learning the confidence interval around the value function or the Q-function and eliminating actions that are not optimal (with high probability). We provide a model-based and a model-free variants of the elimination method. We further derive stopping conditions guaranteeing that the learned policy is approximately optimal with high probability. Simulations demonstrate a considerable speedup and added robustness over ε-greedy Q-learning. * . Preliminary and partial results from this work appeared as extended abstracts in COLT 2002 and ICML 2003.
translated by 谷歌翻译
积极的学习方法在减少学习所需的样本数量方面表现出了巨大的希望。随着自动化学习系统被采用到实时的现实世界决策管道中,越来越重要的是,这种算法的设计考虑到了安全性。在这项工作中,我们研究了在互动环境中学习最佳安全决定的复杂性。我们将这个问题减少到约束的线性匪徒问题,我们的目标是找到满足某些(未知)安全限制的最佳手臂。我们提出了一种基于自适应的实验性设计算法,在显示ARM的难度与次优的难度之间,我们表现出了有效的交易。据我们所知,我们的结果是具有安全限制的线性匪徒最佳武器识别。实际上,我们证明了这种方法在合成和现实世界数据集上的表现很好。
translated by 谷歌翻译
我们考虑了一个随机的多武器强盗问题,其中奖励会受到对抗性腐败的影响。我们提出了一种新颖的攻击策略,该策略可以操纵UCB原理,以拉动一些非最佳目标臂$ t -o(t)$ times,累积成本将其缩放为$ \ sqrt {\ log t} $,其中$ t $是回合的数量。我们还证明了累积攻击成本的第一个下限。我们的下限将我们的上限匹配到$ \ log \ log t $因子,这表明我们的攻击非常最佳。
translated by 谷歌翻译