While there have been a number of remarkable breakthroughs in machine learning (ML), much of the focus has been placed on model development. However, to truly realize the potential of machine learning in real-world settings, additional aspects must be considered across the ML pipeline. Data-centric AI is emerging as a unifying paradigm that could enable such reliable end-to-end pipelines. However, this remains a nascent area with no standardized framework to guide practitioners to the necessary data-centric considerations or to communicate the design of data-centric driven ML systems. To address this gap, we propose DC-Check, an actionable checklist-style framework to elicit data-centric considerations at different stages of the ML pipeline: Data, Training, Testing, and Deployment. This data-centric lens on development aims to promote thoughtfulness and transparency prior to system development. Additionally, we highlight specific data-centric AI challenges and research opportunities. DC-Check is aimed at both practitioners and researchers to guide day-to-day development. As such, to easily engage with and use DC-Check and associated resources, we provide a DC-Check companion website (https://www.vanderschaar-lab.com/dc-check/). The website will also serve as an updated resource as methods and tooling evolve over time.
translated by 谷歌翻译
机器学习(ML)系统的开发和部署可以用现代工具轻松执行,但该过程通常是匆忙和意思是结束的。缺乏勤奋会导致技术债务,范围蠕变和未对准的目标,模型滥用和失败,以及昂贵的后果。另一方面,工程系统遵循明确定义的流程和测试标准,以简化高质量,可靠的结果的开发。极端是航天器系统,其中关键任务措施和鲁棒性在开发过程中根深蒂固。借鉴航天器工程和ML的经验(通过域名通过产品的研究),我们开发了一种经过验证的机器学习开发和部署的系统工程方法。我们的“机器学习技术准备水平”(MLTRL)框架定义了一个原则的过程,以确保强大,可靠和负责的系统,同时为ML工作流程流线型,包括来自传统软件工程的关键区别。 MLTRL甚至更多,MLTRL为跨团队和组织的人们定义了一个人工智能和机器学习技术的人员。在这里,我们描述了通过生产化和部署在医学诊断,消费者计算机视觉,卫星图像和粒子物理学等领域,以通过生产和部署在基本研究中开发ML方法的几个现实世界使用情况的框架和阐明。
translated by 谷歌翻译
如今,由于最近在人工智能(AI)和机器学习(ML)中的近期突破,因此,智能系统和服务越来越受欢迎。然而,机器学习不仅满足软件工程,不仅具有有希望的潜力,而且还具有一些固有的挑战。尽管最近的一些研究努力,但我们仍然没有明确了解开发基于ML的申请和当前行业实践的挑战。此外,目前尚不清楚软件工程研究人员应将其努力集中起来,以更好地支持ML应用程序开发人员。在本文中,我们报告了一个旨在了解ML应用程序开发的挑战和最佳实践的调查。我们合成从80名从业者(以不同的技能,经验和应用领域)获得的结果为17个调查结果;概述ML应用程序开发的挑战和最佳实践。参与基于ML的软件系统发展的从业者可以利用总结最佳实践来提高其系统的质量。我们希望报告的挑战将通知研究界有关需要调查的主题,以改善工程过程和基于ML的申请的质量。
translated by 谷歌翻译
预测模型越来越多地用于在医疗保健,金融和政策等高风险领域中做出各种结果决策。确保这些模型做出准确的预测,对数据的变化,不依赖虚假特征,并且不会过分区分少数群体,这变得至关重要。为此,最近的文献提出了几种涵盖各个领域的方法,例如解释性,公平性和鲁棒性。当这种方法迎合对用户对模型的理解时,需要以人为本。但是,一旦部署了监测机器学习的需求和挑战,就存在研究差距。为了填补这一差距,我们对13位从业人员进行了访谈研究,他们在部署ML模型并与跨越领域的客户互动,例如金融服务,医疗保健,招聘,在线零售,计算广告和对话助理等领域。我们确定了在现实世界应用中对模型监控的各种挑战和要求。具体而言,我们发现了模型监视系统的需求和挑战,以阐明监测观察结果对结果的影响。此外,此类见解必须是可行的,可靠的,可针对特定于域的用例定制,并认知考虑以避免信息超负荷。
translated by 谷歌翻译
When testing conditions differ from those represented in training data, so-called out-of-distribution (OOD) inputs can mar the reliability of black-box learned components in the modern robot autonomy stack. Therefore, coping with OOD data is an important challenge on the path towards trustworthy learning-enabled open-world autonomy. In this paper, we aim to demystify the topic of OOD data and its associated challenges in the context of data-driven robotic systems, drawing connections to emerging paradigms in the ML community that study the effect of OOD data on learned models in isolation. We argue that as roboticists, we should reason about the overall system-level competence of a robot as it performs tasks in OOD conditions. We highlight key research questions around this system-level view of OOD problems to guide future research toward safe and reliable learning-enabled autonomy.
translated by 谷歌翻译
数据质量的系统量化对于一致的模型性能至关重要。先前的工作集中在分发数据上。取而代之的是,我们解决了一个研究了一个研究的且同样重要的问题,即表征不协调的区域(ID)数据,这可能是由特征空间异质性引起的。为此,我们提出了使用数据套件的范式转移:一个以数据为中心的AI框架来识别这些区域,而与特定于任务的模型无关。数据套件利用Copula建模,表示学习和共形预测,以基于一组培训实例来构建功能置信区间估计器。这些估计器可用于评估有关培训集的测试实例的一致性,以回答两个实际有用的问题:(1)通过培训培训实例培训的模型可以可靠地预测哪些测试实例? (2)我们可以确定功能空间的不协调区域,以便数据所有者了解数据的局限性还是指导未来数据收集?我们从经验上验证了数据套件的性能和覆盖范围保证,并在跨站点的医疗数据,有偏见的数据以及具有概念漂移的数据上证明,数据套件最能确定下游模型可能是可靠的ID区域(与所述模型无关)。我们还说明了这些确定的区域如何为数据集提供见解并突出其局限性。
translated by 谷歌翻译
机器学习(ML)研究通常集中在模型上,而最突出的数据集已用于日常的ML任务,而不考虑这些数据集对基本问题的广度,困难和忠诚。忽略数据集的基本重要性已引起了重大问题,该问题涉及现实世界中的数据级联以及数据集驱动标准的模型质量饱和,并阻碍了研究的增长。为了解决此问题,我们提出Dataperf,这是用于评估ML数据集和数据集工作算法的基准软件包。我们打算启用“数据棘轮”,其中培训集将有助于评估相同问题的测试集,反之亦然。这种反馈驱动的策略将产生一个良性的循环,该循环将加速以数据为中心的AI。MLCommons协会将维护Dataperf。
translated by 谷歌翻译
组织依靠机器学习工程师(MLE)来操作ML,即部署和维护生产中的ML管道。操作ML或MLOP的过程包括(i)数据收集和标记的连续循环,(ii)实验以改善ML性能,(iii)在多阶段部署过程中评估,以及(iv)监视(iv)性能下降。当一起考虑这些责任似乎令人震惊 - 任何人如何进行MLOP,没有解决的挑战,对工具制造商有什么影响?我们对在包括聊天机器人,自动驾驶汽车和金融在内的许多应用程序中工作的18个MLE进行了半结构化的民族志访谈。我们的访谈暴露了三个变量,这些变量控制了生产ML部署的成功:速度,验证和版本。我们总结了成功实验,部署和维持生产绩效的共同实践。最后,我们讨论了受访者的痛点和反图案,对工具设计产生了影响。
translated by 谷歌翻译
背景信息:在过去几年中,机器学习(ML)一直是许多创新的核心。然而,包括在所谓的“安全关键”系统中,例如汽车或航空的系统已经被证明是非常具有挑战性的,因为ML的范式转变为ML带来完全改变传统认证方法。目的:本文旨在阐明与ML为基础的安全关键系统认证有关的挑战,以及文献中提出的解决方案,以解决它们,回答问题的问题如何证明基于机器学习的安全关键系统?'方法:我们开展2015年至2020年至2020年之间发布的研究论文的系统文献综述(SLR),涵盖了与ML系统认证有关的主题。总共确定了217篇论文涵盖了主题,被认为是ML认证的主要支柱:鲁棒性,不确定性,解释性,验证,安全强化学习和直接认证。我们分析了每个子场的主要趋势和问题,并提取了提取的论文的总结。结果:单反结果突出了社区对该主题的热情,以及在数据集和模型类型方面缺乏多样性。它还强调需要进一步发展学术界和行业之间的联系,以加深域名研究。最后,它还说明了必须在上面提到的主要支柱之间建立连接的必要性,这些主要柱主要主要研究。结论:我们强调了目前部署的努力,以实现ML基于ML的软件系统,并讨论了一些未来的研究方向。
translated by 谷歌翻译
Despite being responsible for state-of-the-art results in several computer vision and natural language processing tasks, neural networks have faced harsh criticism due to some of their current shortcomings. One of them is that neural networks are correlation machines prone to model biases within the data instead of focusing on actual useful causal relationships. This problem is particularly serious in application domains affected by aspects such as race, gender, and age. To prevent models from incurring on unfair decision-making, the AI community has concentrated efforts in correcting algorithmic biases, giving rise to the research area now widely known as fairness in AI. In this survey paper, we provide an in-depth overview of the main debiasing methods for fairness-aware neural networks in the context of vision and language research. We propose a novel taxonomy to better organize the literature on debiasing methods for fairness, and we discuss the current challenges, trends, and important future work directions for the interested researcher and practitioner.
translated by 谷歌翻译
业务分析(BA)的广泛采用带来了财务收益和提高效率。但是,当BA以公正的影响为决定时,这些进步同时引起了人们对法律和道德挑战的不断增加。作为对这些关注的回应,对算法公平性的新兴研究涉及算法输出,这些算法可能会导致不同的结果或其他形式的对人群亚组的不公正现象,尤其是那些在历史上被边缘化的人。公平性是根据法律合规,社会责任和效用是相关的;如果不充分和系统地解决,不公平的BA系统可能会导致社会危害,也可能威胁到组织自己的生存,其竞争力和整体绩效。本文提供了有关算法公平的前瞻性,注重BA的评论。我们首先回顾有关偏见来源和措施的最新研究以及偏见缓解算法。然后,我们对公用事业关系的详细讨论进行了详细的讨论,强调经常假设这两种构造之间经常是错误的或短视的。最后,我们通过确定企业学者解决有效和负责任的BA的关键的有影响力的公开挑战的机会来绘制前进的道路。
translated by 谷歌翻译
计算病理(CPATH)是一种具有关于组织病理研究的新兴领域,通过计算和分析组织载玻片的数字化高分辨率图像的处理算法。CPATH最近的深度学习的发展已经成功地利用了组织学图像中的原始像素数据的纯粹体积,以预测诊断域,预测,治疗敏感性和患者分层中的目标参数 - 覆盖新数据驱动的AI时代的承诺既组织病理学和肿瘤。使用作为燃料和作为发动机的燃料和AI的数据,CPATH算法准备好用于起飞和最终发射到临床和药物轨道中。在本文中,我们讨论了CPATH限制和相关挑战,使读者能够区分HIPE的希望,并为未来的研究提供指示,以克服这个崭露头角领域的一些主要挑战,以使其发射到两个轨道上。
translated by 谷歌翻译
Problem statement: Standardisation of AI fairness rules and benchmarks is challenging because AI fairness and other ethical requirements depend on multiple factors such as context, use case, type of the AI system, and so on. In this paper, we elaborate that the AI system is prone to biases at every stage of its lifecycle, from inception to its usage, and that all stages require due attention for mitigating AI bias. We need a standardised approach to handle AI fairness at every stage. Gap analysis: While AI fairness is a hot research topic, a holistic strategy for AI fairness is generally missing. Most researchers focus only on a few facets of AI model-building. Peer review shows excessive focus on biases in the datasets, fairness metrics, and algorithmic bias. In the process, other aspects affecting AI fairness get ignored. The solution proposed: We propose a comprehensive approach in the form of a novel seven-layer model, inspired by the Open System Interconnection (OSI) model, to standardise AI fairness handling. Despite the differences in the various aspects, most AI systems have similar model-building stages. The proposed model splits the AI system lifecycle into seven abstraction layers, each corresponding to a well-defined AI model-building or usage stage. We also provide checklists for each layer and deliberate on potential sources of bias in each layer and their mitigation methodologies. This work will facilitate layer-wise standardisation of AI fairness rules and benchmarking parameters.
translated by 谷歌翻译
过去十年已经看到人工智能(AI)的显着进展,这导致了用于解决各种问题的算法。然而,通过增加模型复杂性并采用缺乏透明度的黑匣子AI模型来满足这种成功。为了响应这种需求,已经提出了说明的AI(Xai)以使AI更透明,从而提高关键结构域中的AI。虽然有几个关于Xai主题的Xai主题的评论,但在Xai中发现了挑战和潜在的研究方向,这些挑战和研究方向被分散。因此,本研究为Xai组织的挑战和未来的研究方向提出了系统的挑战和未来研究方向:(1)基于机器学习生命周期的Xai挑战和研究方向,基于机器的挑战和研究方向阶段:设计,开发和部署。我们认为,我们的META调查通过为XAI地区的未来探索指导提供了XAI文学。
translated by 谷歌翻译
软件2.0是软件工程的根本班次,机器学习成为新软件,由大数据和计算基础设施供电。因此,需要重新考虑软件工程,其中数据成为与代码相提并论的一流公民。一个引人注目的观察是,80-90%的机器学习过程都花在数据准备上。没有良好的数据,即使是最好的机器学习算法也不能表现良好。结果,以数据为中心的AI实践现在成为主流。不幸的是,现实世界中的许多数据集是小,肮脏,偏见,甚至中毒。在本调查中,我们研究了数据收集和数据质量的研究景观,主要用于深度学习应用。数据收集很重要,因为对于最近的深度学习方法,功能工程较小,而且需要大量数据。对于数据质量,我们研究数据验证和数据清洁技术。即使数据无法完全清洁,我们仍然可以应对模型培训期间的不完美数据,其中使用鲁棒模型培训技术。此外,虽然在传统数据管理研究中较少研究偏见和公平性,但这些问题成为现代机器学习应用中的重要主题。因此,我们研究了可以在模型培训之前,期间或之后应用的公平措施和不公平的缓解技术。我们相信数据管理界很好地解决了这些方向上的问题。
translated by 谷歌翻译
人工智能(AI)治理调节行使权威和控制AI的管理。它旨在通过有效利用数据并最大程度地减少与AI相关的成本和风险来利用AI。尽管AI治理和AI伦理等主题在理论,哲学,社会和监管层面上进行了详尽的讨论,但针对公司和公司的AI治理工作有限。这项工作将AI产品视为系统,在该系统中,通过机器学习(ML)模型(培训)数据传递关键功能。我们通过在AI和相关领域(例如ML)合成文献来得出一个概念框架。我们的框架将AI治理分解为数据的治理,(ML)模型和(AI)系统沿着四个维度。它与现有的IT和数据治理框架和实践有关。它可以由从业者和学者都采用。对于从业者来说,主要是研究论文的综合,但从业者的出版物和监管机构的出版物也为实施AI治理提供了宝贵的起点,而对于学者来说,该论文强调了许多AI治理领域,值得更多关注。
translated by 谷歌翻译
人类服务系统做出关键决策,影响社会中的个人。美国儿童福利系统做出了这样的决定,从筛查热线报告的报告报告,涉嫌虐待或忽视儿童保护性调查,使儿童接受寄养,再到将儿童返回永久家庭环境。这些对儿童生活的复杂而有影响力的决定取决于儿童福利决策者的判断。儿童福利机构一直在探索使用包括机器学习(ML)的经验,数据信息的方法来支持这些决策的方法。本文描述了ML支持儿童福利决策的概念框架。 ML框架指导儿童福利机构如何概念化ML可以解决的目标问题;兽医可用的管理数据用于构建ML;制定和开发ML规格,以反映机构正在进行的相关人群和干预措施;随着时间的流逝,部署,评估和监视ML作为儿童福利环境,政策和实践变化。道德考虑,利益相关者的参与以及避免框架的影响和成功的共同陷阱。从摘要到具体,我们描述了该框架的一种应用,以支持儿童福利决策。该ML框架虽然以儿童福利为中心,但可以推广用于解决其他公共政策问题。
translated by 谷歌翻译
随着各种公开的AI伦理原则的共识,差距仍然可以随时采用设计和开发负责任的AI系统。我们研究了来自澳大利亚国家科学研究机构(CSIRO)的研究人员和工程师的实践和经验,他们参与设计和开发AI系统的一系列目的。半结构化访谈用于检查参与者的做法如何与澳大利亚政府提出的一套高级AI伦理原则涉及并对齐。原则包括:隐私保护和安全,可靠性和安全性,透明度和解释性,公平性,竞争性,责任,人以人为本的价值观和人类,社会与环境福祉。研究了研究人员和工程师的见解以及在原则的实际应用中为它们提供的挑战。最后,提供了一系列组织响应,以支持实施高级AI道德原则。
translated by 谷歌翻译
如今,人工智能(AI)已成为临床和远程医疗保健应用程序的基本组成部分,但是最佳性能的AI系统通常太复杂了,无法自我解释。可解释的AI(XAI)技术被定义为揭示系统的预测和决策背后的推理,并且在处理敏感和个人健康数据时,它们变得更加至关重要。值得注意的是,XAI并未在不同的研究领域和数据类型中引起相同的关注,尤其是在医疗保健领域。特别是,许多临床和远程健康应用程序分别基于表格和时间序列数据,而XAI并未在这些数据类型上进行分析,而计算机视觉和自然语言处理(NLP)是参考应用程序。为了提供最适合医疗领域表格和时间序列数据的XAI方法的概述,本文提供了过去5年中文献的审查,说明了生成的解释的类型以及为评估其相关性所提供的努力和质量。具体而言,我们确定临床验证,一致性评估,客观和标准化质量评估以及以人为本的质量评估作为确保最终用户有效解释的关键特征。最后,我们强调了该领域的主要研究挑战以及现有XAI方法的局限性。
translated by 谷歌翻译
机器学习透明度(ML),试图揭示复杂模型的工作机制。透明ML承诺推进人为因素在目标用户中以人为本的人体目标的工程目标。从以人为本的设计视角,透明度不是ML模型的属性,而是一种能力,即算法与用户之间的关系;因此,与用户的迭代原型和评估对于获得提供透明度的充足解决方案至关重要。然而,由于有限的可用性和最终用户,遵循了医疗保健和医学图像分析的人以人为本的设计原则是具有挑战性的。为了调查医学图像分析中透明ML的状态,我们对文献进行了系统审查。我们的评论在医学图像分析应用程序的透明ML的设计和验证方面揭示了多种严重的缺点。我们发现,大多数研究到达迄今为止透明度作为模型本身的属性,类似于任务性能,而不考虑既未开发也不考虑最终用户也不考虑评估。此外,缺乏用户研究以及透明度声明的偶发验证将当代研究透明ML的医学图像分析有可能对用户难以理解的风险,因此临床无关紧要。为了缓解即将到来的研究中的这些缺点,同时承认人以人为中心设计在医疗保健中的挑战,我们介绍了用于医学图像分析中的透明ML系统的系统设计指令。 Intrult指南建议形成的用户研究作为透明模型设计的第一步,以了解用户需求和域要求。在此过程之后,会产生支持设计选择的证据,最终增加了算法提供透明度的可能性。
translated by 谷歌翻译