培训强化学习者在多种环境中不断学习是一个具有挑战性的问题。缺乏可重复的实验和标准指标来比较不同的持续学习方法,这变得更加困难。为了解决这个问题,我们提出了Tella,这是一种测试和评估终身学习代理商的工具。Tella为终身学习代理提供了指定的,可重复的课程,同时记录详细数据进行评估和标准化分析。研究人员可以在各种学习环境中定义和分享自己的课程,或与DARPA终身学习机(L2M)计划创建的课程相抵触。
translated by 谷歌翻译
Progress in continual reinforcement learning has been limited due to several barriers to entry: missing code, high compute requirements, and a lack of suitable benchmarks. In this work, we present CORA, a platform for Continual Reinforcement Learning Agents that provides benchmarks, baselines, and metrics in a single code package. The benchmarks we provide are designed to evaluate different aspects of the continual RL challenge, such as catastrophic forgetting, plasticity, ability to generalize, and sample-efficient learning. Three of the benchmarks utilize video game environments (Atari, Procgen, NetHack). The fourth benchmark, CHORES, consists of four different task sequences in a visually realistic home simulator, drawn from a diverse set of task and scene parameters. To compare continual RL methods on these benchmarks, we prepare three metrics in CORA: Continual Evaluation, Isolated Forgetting, and Zero-Shot Forward Transfer. Finally, CORA includes a set of performant, open-source baselines of existing algorithms for researchers to use and expand on. We release CORA and hope that the continual RL community can benefit from our contributions, to accelerate the development of new continual RL algorithms.
translated by 谷歌翻译
As Artificial and Robotic Systems are increasingly deployed and relied upon for real-world applications, it is important that they exhibit the ability to continually learn and adapt in dynamically-changing environments, becoming Lifelong Learning Machines. Continual/lifelong learning (LL) involves minimizing catastrophic forgetting of old tasks while maximizing a model's capability to learn new tasks. This paper addresses the challenging lifelong reinforcement learning (L2RL) setting. Pushing the state-of-the-art forward in L2RL and making L2RL useful for practical applications requires more than developing individual L2RL algorithms; it requires making progress at the systems-level, especially research into the non-trivial problem of how to integrate multiple L2RL algorithms into a common framework. In this paper, we introduce the Lifelong Reinforcement Learning Components Framework (L2RLCF), which standardizes L2RL systems and assimilates different continual learning components (each addressing different aspects of the lifelong learning problem) into a unified system. As an instantiation of L2RLCF, we develop a standard API allowing easy integration of novel lifelong learning components. We describe a case study that demonstrates how multiple independently-developed LL components can be integrated into a single realized system. We also introduce an evaluation environment in order to measure the effect of combining various system components. Our evaluation environment employs different LL scenarios (sequences of tasks) consisting of Starcraft-2 minigames and allows for the fair, comprehensive, and quantitative comparison of different combinations of components within a challenging common evaluation environment.
translated by 谷歌翻译
Many challenging reinforcement learning (RL) problems require designing a distribution of tasks that can be applied to train effective policies. This distribution of tasks can be specified by the curriculum. A curriculum is meant to improve the results of learning and accelerate it. We introduce Success Induced Task Prioritization (SITP), a framework for automatic curriculum learning, where a task sequence is created based on the success rate of each task. In this setting, each task is an algorithmically created environment instance with a unique configuration. The algorithm selects the order of tasks that provide the fastest learning for agents. The probability of selecting any of the tasks for the next stage of learning is determined by evaluating its performance score in previous stages. Experiments were carried out in the Partially Observable Grid Environment for Multiple Agents (POGEMA) and Procgen benchmark. We demonstrate that SITP matches or surpasses the results of other curriculum design methods. Our method can be implemented with handful of minor modifications to any standard RL framework and provides useful prioritization with minimal computational overhead.
translated by 谷歌翻译
大多数深度加强学习(DRL)的方法试图一次解决单一任务。因此,大多数现有的研究基准组成包括具有普通接口,但在其感知特征,目标或奖励结构中重叠的单独游戏或套房。促进培训代理人的知识转移(例如,通过多任务和元学习),需要更多的环境套件,提供具有足够共同的可配置任务,以共同研究待研究。在本文中,我们提供了Meta Arcade,该工具可以轻松定义和配置共享公共视觉效果,状态空间,动作空间,游戏组件和评分机制的自定义2D街机游戏。元拱门与现有环境不同,因为任职性共性和可配置性都优先考虑:可以从公共元素构建整组游戏,并且这些元素可通过暴露参数调节。我们包括一套24个预定义的游戏,共同说明了该框架的可能性,并讨论如何为研究应用程序配置这些游戏。我们提供了几个实验,说明了可以使用Meta Arcade如何使用,包括预定义游戏的单项任务基准,以设定的时间表更改游戏参数的示例课程的方法,以及游戏之间的转移学习探索。
translated by 谷歌翻译
持续学习领域(CL)寻求开发通过与非静止环境的交互累积随时间累积知识和技能的算法。在实践中,存在一种夸张的评估程序和算法解决方案(方法),每个潜在的潜在不相交的假设集。这种品种使得在CL困难中进行了衡量进展。我们提出了一种设置的分类,其中每个设置被描述为一组假设。从这个视图中出现了一棵树形的层次结构,更多的一般环境成为具有更严格假设的人的父母。这使得可以使用继承来共享和重用研究,因为开发给定设置的方法也使其直接适用于其任何孩子。我们将此想法实例化为名为SequoIa的公开软件框架,其特征来自持续监督学习(CSL)和持续加强学习(CRL)域的各种环境。除了来自外部图书馆的更专业的方法之外,SemoIa还包括一种易于延伸和定制的不断增长的方法。我们希望这一新的范式及其第一个实施可以帮助统一和加速CL的研究。您可以通过访问github.com/lebrice/squia来帮助我们长大树。
translated by 谷歌翻译
深度强化学习(RL)导致了许多最近和开创性的进步。但是,这些进步通常以培训的基础体系结构的规模增加以及用于训练它们的RL算法的复杂性提高,而均以增加规模的成本。这些增长反过来又使研究人员更难迅速原型新想法或复制已发表的RL算法。为了解决这些问题,这项工作描述了ACME,这是一个用于构建新型RL算法的框架,这些框架是专门设计的,用于启用使用简单的模块化组件构建的代理,这些组件可以在各种执行范围内使用。尽管ACME的主要目标是为算法开发提供一个框架,但第二个目标是提供重要或最先进算法的简单参考实现。这些实现既是对我们的设计决策的验证,也是对RL研究中可重复性的重要贡献。在这项工作中,我们描述了ACME内部做出的主要设计决策,并提供了有关如何使用其组件来实施各种算法的进一步详细信息。我们的实验为许多常见和最先进的算法提供了基准,并显示了如何为更大且更复杂的环境扩展这些算法。这突出了ACME的主要优点之一,即它可用于实现大型,分布式的RL算法,这些算法可以以较大的尺度运行,同时仍保持该实现的固有可读性。这项工作提出了第二篇文章的版本,恰好与模块化的增加相吻合,对离线,模仿和从演示算法学习以及作为ACME的一部分实现的各种新代理。
translated by 谷歌翻译
在本文VisualEnv中,介绍了一种用于强化学习的可视环境的新工具。它是开源建模和渲染软件,搅拌机和用于生成仿真环境模型的Python模块的产品的产品。VisualEnv允许用户创建具有照片拟真渲染功能的自定义环境,并与Python完全集成。框架描述并测试了一系列示例问题,这些问题展示了培训强化学习代理的功能。
translated by 谷歌翻译
Lifelong learning aims to create AI systems that continuously and incrementally learn during a lifetime, similar to biological learning. Attempts so far have met problems, including catastrophic forgetting, interference among tasks, and the inability to exploit previous knowledge. While considerable research has focused on learning multiple input distributions, typically in classification, lifelong reinforcement learning (LRL) must also deal with variations in the state and transition distributions, and in the reward functions. Modulating masks, recently developed for classification, are particularly suitable to deal with such a large spectrum of task variations. In this paper, we adapted modulating masks to work with deep LRL, specifically PPO and IMPALA agents. The comparison with LRL baselines in both discrete and continuous RL tasks shows competitive performance. We further investigated the use of a linear combination of previously learned masks to exploit previous knowledge when learning new tasks: not only is learning faster, the algorithm solves tasks that we could not otherwise solve from scratch due to extremely sparse rewards. The results suggest that RL with modulating masks is a promising approach to lifelong learning, to the composition of knowledge to learn increasingly complex tasks, and to knowledge reuse for efficient and faster learning.
translated by 谷歌翻译
加强学习(RL)研究的进展通常是由新的,具有挑战性的环境的设计驱动的,这是一项昂贵的事业,需要技能与典型的机器学习研究人员的正交性。环境发展的复杂性仅随着程序性产生(PCG)的兴起而增加,作为产生能够测试RL剂稳健性和泛化的各种环境的流行范式。此外,现有环境通常需要复杂的构建过程,从而使重现结果变得困难。为了解决这些问题,我们介绍了基于网状引擎的基于网络的集成开发环境(IDE)Griddlyjs。 Griddlyjs允许研究人员使用方便的图形接口在视觉上设计和调试任意,复杂的PCG网格世界环境,并可视化,评估和记录训练有素的代理模型的性能。通过将RL工作流连接到由现代Web标准启用的高级功能,Griddlyjs允许发布交互式代理 - 环境演示,将实验结果直接重现为Web。为了证明Griddlyjs的多功能性,我们使用它来快速开发一个复杂的组成拼图解决环境,以及任意人为设计的环境配置及其用于自动课程学习和离线RL的解决方案。 Griddlyjs IDE是开源的,可以在\ url {https://griddly.ai}上免费获得。
translated by 谷歌翻译
A long-standing challenge in artificial intelligence is lifelong learning. In lifelong learning, many tasks are presented in sequence and learners must efficiently transfer knowledge between tasks while avoiding catastrophic forgetting over long lifetimes. On these problems, policy reuse and other multi-policy reinforcement learning techniques can learn many tasks. However, they can generate many temporary or permanent policies, resulting in memory issues. Consequently, there is a need for lifetime-scalable methods that continually refine a policy library of a pre-defined size. This paper presents a first approach to lifetime-scalable policy reuse. To pre-select the number of policies, a notion of task capacity, the maximal number of tasks that a policy can accurately solve, is proposed. To evaluate lifetime policy reuse using this method, two state-of-the-art single-actor base-learners are compared: 1) a value-based reinforcement learner, Deep Q-Network (DQN) or Deep Recurrent Q-Network (DRQN); and 2) an actor-critic reinforcement learner, Proximal Policy Optimisation (PPO) with or without Long Short-Term Memory layer. By selecting the number of policies based on task capacity, D(R)QN achieves near-optimal performance with 6 policies in a 27-task MDP domain and 9 policies in an 18-task POMDP domain; with fewer policies, catastrophic forgetting and negative transfer are observed. Due to slow, monotonic improvement, PPO requires fewer policies, 1 policy for the 27-task domain and 4 policies for the 18-task domain, but it learns the tasks with lower accuracy than D(R)QN. These findings validate lifetime-scalable policy reuse and suggest using D(R)QN for larger and PPO for smaller library sizes.
translated by 谷歌翻译
We study the use of model-based reinforcement learning methods, in particular, world models for continual reinforcement learning. In continual reinforcement learning, an agent is required to solve one task and then another sequentially while retaining performance and preventing forgetting on past tasks. World models offer a task-agnostic solution: they do not require knowledge of task changes. World models are a straight-forward baseline for continual reinforcement learning for three main reasons. Firstly, forgetting in the world model is prevented by persisting existing experience replay buffers across tasks, experience from previous tasks is replayed for learning the world model. Secondly, they are sample efficient. Thirdly and finally, they offer a task-agnostic exploration strategy through the uncertainty in the trajectories generated by the world model. We show that world models are a simple and effective continual reinforcement learning baseline. We study their effectiveness on Minigrid and Minihack continual reinforcement learning benchmarks and show that it outperforms state of the art task-agnostic continual reinforcement learning methods.
translated by 谷歌翻译
通过加强学习解决现实世界的顺序决策问题(RL)通常始于使用模拟真实条件的模拟环境。我们为现实的农作物管理任务提供了一种新颖的开源RL环境。 Gym-DSSAT是高保真作物模拟器的农业技术转移决策支持系统(DSSAT)的健身房界面。在过去的30年中,DSSAT已发展,并被农学家广泛认可。 Gym-DSSAT带有基于现实世界玉米实验的预定义仿真。环境与任何健身房环境一样易于使用。我们使用基本RL算法提供性能基准。我们还简要概述了用Fortran编写的单片DSSAT模拟器如何变成Python RL环境。我们的方法是通用的,可以应用于类似的模拟器。我们报告了非常初步的实验结果,这表明RL可以帮助研究人员改善受精和灌溉实践的可持续性。
translated by 谷歌翻译
深度强化学习(RL)的进展是通过用于培训代理商的具有挑战性的基准的可用性来驱动。但是,社区广泛采用的基准未明确设计用于评估RL方法的特定功能。虽然存在用于评估RL的特定打开问题的环境(例如探索,转移学习,无监督环境设计,甚至语言辅助RL),但一旦研究超出证明,通常难以将这些更富有,更复杂的环境 - 概念结果。我们展示了一个强大的沙箱框架,用于易于设计新颖的RL环境。 Minihack是一个停止商店,用于RL实验,环境包括从小房间到复杂的,程序生成的世界。通过利用来自Nethack的全套实体和环境动态,MiniHack是最富有的基网上的视频游戏之一,允许设计快速方便的定制RL测试台。使用这种沙箱框架,可以轻松设计新颖的环境,可以使用人类可读的描述语言或简单的Python接口来设计。除了各种RL任务和基线外,Minihack还可以包装现有的RL基准,并提供无缝添加额外复杂性的方法。
translated by 谷歌翻译
我们开发了一种新的持续元学习方法,以解决连续多任务学习中的挑战。在此设置中,代理商的目标是快速通过任何任务序列实现高奖励。先前的Meta-Creenifiltive学习算法已经表现出有希望加速收购新任务的结果。但是,他们需要在培训期间访问所有任务。除了简单地将过去的经验转移到新任务,我们的目标是设计学习学习的持续加强学习算法,使用他们以前任务的经验更快地学习新任务。我们介绍了一种新的方法,连续的元策略搜索(Comps),通过以增量方式,在序列中的每个任务上,通过序列的每个任务来消除此限制,而无需重新访问先前的任务。 Comps持续重复两个子程序:使用RL学习新任务,并使用RL的经验完全离线Meta学习,为后续任务学习做好准备。我们发现,在若干挑战性连续控制任务的旧序列上,Comps优于持续的持续学习和非政策元增强方法。
translated by 谷歌翻译
我们介绍RLDS(强化学习数据集),一个生态系统,用于在连续决策(SDM)的上下文中记录,重播,操纵,注释和共享数据,包括加强学习(RL),从演示,离线RL或I模仿学习学习。 RLDS不仅能够再现现有的研究和轻松生成新数据集,而且还加速了新的研究。通过提供标准和无损的数据集格式,它可以在更广泛的任务中快速测试新的算法。 RLDS生态系统使数据集很容易在没有任何信息丢失的情况下共享数据集,并且在将各种数据处理管道应用于大集的数据集时,在底层原始格式不可知。此外,RLD提供了用于收集由合成代理或人类生成的数据的工具,以及检查和操纵收集的数据。最终,与TFD的集成有助于与研究界共享RL数据集。
translated by 谷歌翻译
深度加强学习概括(RL)的研究旨在产生RL算法,其政策概括为在部署时间进行新的未经调整情况,避免对其培训环境的过度接受。如果我们要在现实世界的情景中部署强化学习算法,那么解决这一点至关重要,那么环境将多样化,动态和不可预测。该调查是这个新生领域的概述。我们为讨论不同的概括问题提供统一的形式主义和术语,在以前的作品上建立不同的概括问题。我们继续对现有的基准进行分类,以及用于解决泛化问题的当前方法。最后,我们提供了对现场当前状态的关键讨论,包括未来工作的建议。在其他结论之外,我们认为,采取纯粹的程序内容生成方法,基准设计不利于泛化的进展,我们建议快速在线适应和将RL特定问题解决作为未来泛化方法的一些领域,我们推荐在UniTexplorated问题设置中构建基准测试,例如离线RL泛化和奖励函数变化。
translated by 谷歌翻译
SKRL是一个开源模块化库,用于用Python编写的加固学习,设计着专注于算法实现的可读性,简单性和透明度。除了使用OpenAi Gym和DeepMind的传统接口的支持环境外,它还提供了装载,配置和操作NVIDIA ISAAC健身房和Nvidia Omniverse Isaac Gym Gym Gunt环境的设施。此外,它可以同时对几个具有可定制范围的代理(所有可用环境的子集)进行培训,这些代理在同一运行中可能会或可能不会共享资源。可以在https://skrl.readthedocs.io上找到该库的文档,其源代码可在https://github.com/toni-sm/skrl上找到。
translated by 谷歌翻译
强化学习(RL)已证明可以在各种任务中达到超级人类水平的表现。但是,与受监督的机器学习不同,将其推广到各种情况的学习策略仍然是现实世界中最具挑战性的问题之一。自主驾驶(AD)提供了一个多方面的实验领域,因为有必要在许多变化的道路布局和可能的交通情况大量分布中学习正确的行为,包括个人驾驶员个性和难以预测的交通事件。在本文中,我们根据可配置,灵活和性能的代码库为AD提出了一个具有挑战性的基准。我们的基准测试使用了随机场景生成器的目录,包括用于道路布局和交通变化的多种机制,不同的数值和视觉观察类型,不同的动作空间,不同的车辆模型,并允许在静态场景定义下使用。除了纯粹的算法见解外,我们面向应用程序的基准还可以更好地理解设计决策的影响,例如行动和观察空间对政策的普遍性。我们的基准旨在鼓励研究人员提出能够在各种情况下成功概括的解决方案,这是当前RL方法失败的任务。基准的代码可在https://github.com/seawee1/driver-dojo上获得。
translated by 谷歌翻译
我们介绍了Godot强化学习(RL)代理,这是一个用于在戈戈斯游戏引擎中发展环境和代理的开源接口。Goot RL代理界面允许在具有各种策略和偏离策略的深度RL算法的具有挑战性的2D和3D环境中设计,创建和学习代理行为。我们提供标准的健身房界面,带有包装纸,用于学习Ray Rllib和稳定的基线RL框架。这允许用户访问最近20个艺术策略,禁止策略和多代理RL算法的状态。该框架是一个多功能工具,允许研究人员和游戏设计人员能够使用离散,连续和混合动作空间创建环境。界面相对表现,在高端膝上型计算机上每秒12k交互,当在4个CPU内核上被平移。概述视频可在此处提供:https://youtu.be/g1mlzsfqij4
translated by 谷歌翻译