导航功能同时提供路径和运动计划,可用于确保球体世界中的避免障碍和融合。在处理复杂和现实的场景时,建立对球体世界的转变至关重要,同时又具有挑战性。这项工作提出了一种新颖的转换,称为保形导航转换,以实现带有任意形状障碍的工作空间中机器人的无碰撞导航。研究了保形导航转换的特性,包括唯一性,导航属性的不变性和无角变形,这有助于在复杂环境中的机器人导航问题解决方案。基于导航功能和提出的转换,为运动和动态移动机器人的自动指导和运动控制提供了反馈控制器。此外,提出了一种迭代方法,以在多连接的工作区中构造保形导航变换,该连接工作区将多连接的问题转换为多个单一连接的问题以实现快速收敛。除了分析保证外,模拟研究还验证了在具有非平凡障碍的工作区中提出的方法的有效性。
translated by 谷歌翻译
这项工作提出了一种新颖的转换,称为保形导航转换,以实现具有任意多边形障碍的工作空间中机器人的无碰撞导航。在这项工作中研究了多边形工作空间中保形导航转换的性能,以及其为导航问题提供解决方案的能力。 %研究了共形导航转换的特性,这有助于在复杂多边形环境中的机器人导航问题解决方案。 %促进了复杂环境中机器人的导航。导航功能的定义被推广以适应非平滑障碍边界。基于提出的转换和广义导航功能,可证明正确的反馈控制器是为运动移动机器人的自动指导和运动控制而得出的。此外,提出了一种迭代方法,以在多连接的多边形工作空间中构建保形导航变换,该连接的多边形工作空间将多连接的问题转换为多个单一连接的问题,以实现快速收敛。在具有非平凡多边形障碍的工作空间中提出的方法的有效性。
translated by 谷歌翻译
我们开发了一种自主导航算法,用于在二维环境中运行的机器人杂乱,其具有任意凸形的障碍物。所提出的导航方法依赖于混合反馈,以保证机器人对预定目标位置的全局渐近稳定,同时确保无障碍工作空间的前向不变性。主要思想在于基于机器人相对于最近障碍的接近设计,在移动到目标模式和障碍物避免模式之间设计适当的切换策略。当机器人初始化远离障碍物的边界时,所提出的混合控制器产生连续速度输入轨迹。最后,我们为所提出的混合控制器的基于传感器的实现提供了一种算法过程,并通过一些仿真结果验证其有效性。
translated by 谷歌翻译
作为一个简单且强大的移动机器人基础,可以将差速器驱动器机器人建模为运动学独轮车,在工业和国内环境中找到了物流和服务机器人技术的重要应用。安全的机器人在障碍物周围导航是这样的独轮车机器人在复杂的混乱环境中执行各种有用任务的重要技能,尤其是在人和其他机器人周围。在本文中,作为标准圆形Lyapunov级集的更准确的替代方法,我们介绍了新型的锥形反馈运动预测方法,用于在标准的Unicycle运动控制方法下界定运动学Unicycle机器人机器人模型的近环运动轨迹。我们介绍了使用参考调速器的安全机器人导航的Unicycle反馈运动预测的应用,在该机器人的安全下,根据预测的机器人运动,不断监视独轮车运动的安全性。我们研究了运动预测对机器人行为在数值模拟中的作用,并得出结论,准确的反馈运动预测是安全和快速机器人导航的关键。
translated by 谷歌翻译
我们研究了目标稳定的问题,并在机器人和车辆中避免了强大的障碍物,这些障碍物仅用于实现实时定位的目的。由于障碍物引起的拓扑障碍,该问题尤其具有挑战性,这排除了能够同时稳定和避免障碍的平稳反馈控制器的存在。为了克服这个问题,我们开发了一个基于视觉的混合控制器,该控制器可以使用磁滞机制和数据辅助主管在两种不同的反馈定律之间切换。本文的主要创新是将合适的感知图纳入混合控制器。这些地图可以从从车辆中的摄像机获得的数据中学到,并通过卷积神经网络(CNN)训练。在此感知图上​​的合适假设下,我们就融合和避免障碍物的轨迹建立了对车辆轨​​迹的理论保证。此外,在不同的情况下,对基于视觉的混合控制器进行了数值测试,包括嘈杂的数据,失败的传感器以及带有遮挡的相机。
translated by 谷歌翻译
本文考虑了非独立多机器人系统的同时位置和方向计划。与仅关注最终位置限制的常见研究不同,我们将非语言移动机器人建模为刚性机构,并引入机器人最终状态的方向和位置约束。换句话说,机器人不仅应达到指定的位置,而且还应同时指出所需的方向。这个问题的挑战在于全州运动计划的不足,因为只需要通过两个控制输入来计划三个州。为此,我们根据刚体建模提出了动态矢量场(DVF)。具体而言,机器人方向的动力学被带入矢量场,这意味着向量场不再是2-D平面上的静态,而是一个动态的,而动态场却随态度角度而变化。因此,每个机器人可以沿DVF的积分曲线移动以达到所需位置,与此同时,姿态角可以在方向动力学之后收敛到指定值。随后,通过在DVF的框架下设计一个圆形向量场,我们进一步研究了运动计划中的避免障碍物和相互企业的避免。最后,提供了数值仿真示例,以验证提出的方法的有效性。
translated by 谷歌翻译
In this work, we propose a collision-free source seeking control framework for unicycle robots traversing an unknown cluttered environment. In this framework, the obstacle avoidance is guided by the control barrier functions (CBF) embedded in quadratic programming and the source seeking control relies solely on the use of on-board sensors that measure signal strength of the source. To tackle the mixed relative degree of the CBF, we proposed three different CBF, namely the zeroing control barrier functions (ZCBF), exponential control barrier functions (ECBF), and reciprocal control barrier functions (RCBF) that can directly be integrated with our recent gradient-ascent source-seeking control law. We provide rigorous analysis of the three different methods and show the efficacy of the approaches in simulations using Matlab, as well as, using a realistic dynamic environment with moving obstacles in Gazebo/ROS.
translated by 谷歌翻译
Safe and smooth robot motion around obstacles is an essential skill for autonomous robots, especially when operating around people and other robots. Conventionally, due to real-time operation requirements and onboard computation limitations, many robot motion planning and control methods follow a two-step approach: first construct a (e.g., piecewise linear) collision-free reference path for a simplified robot model, and then execute the reference plan via path-following control for a more accurate and complex robot model. A challenge of such a decoupled robot motion planning and control method for highly dynamic robotic systems is ensuring the safety of path-following control as well as the successful completion of the reference plan. In this paper, we introduce a novel dynamical systems approach for online closed-loop time parametrization, called $\textit{a time governor}$, of a reference path for provably correct and safe path-following control based on feedback motion prediction, where the safety of robot motion under path-following control is continuously monitored using predicted robot motion. After introducing the general framework of time governors for safe path following, we present an example application for the fully actuated high-order robot dynamics using proportional-and-higher-order-derivative (PhD) path-following control whose feedback motion prediction is performed by Lyapunov ellipsoids and Vandemonde simplexes. In numerical simulations, we investigate the role of reference position and velocity feedback, and motion prediction on path-following performance and robot motion.
translated by 谷歌翻译
我们提出协调指导矢量字段,以与机器人团队同时完成两个任务:首先,多个机器人的指导和导航到可能嵌入2D或3D中的可能不同的路径或表面;其次,他们的运动协调在跟踪他们的规定路径或表面时。运动配位是由路径或表面上的机器人之间所需的参数位移定义的。通过控制对应于指导矢量场之间的路径或表面参数的虚拟坐标来实现这种所需的位移。由动力学系统理论和Lyapunov理论支撑的严格数学保证,用于从所有初始位置上有效的分布式运动协调和机器人在路径或表面上导航。作为实用机器人应用的一个例子,我们从所提出的具有驱动饱和度的Dubins-car样模型的指导向量场中得出了一种对照算法。我们提出的算法分布并可扩展到任意数量的机器人。此外,广泛的说明性模拟和固定翼飞机户外实验验证了我们算法的有效性和鲁棒性。
translated by 谷歌翻译
通过连续静态状态反馈诱导的任务是在本文中考虑了非线性控制系统中的渐近稳定的杂核轨道。主要动机来自确保在欠抖动的机械系统中对所谓的点对点机动的收敛的问题。即,在其状态控制空间中平滑曲线,这与系统动态一致,并连接两个(线性)稳定的平衡点。该方法使用特定的参数化,以及在机动上的状态投影,以便为此目的结合两个线性化技术:沿轨道的边界的均衡和横向线性化的雅蟒线性化。这允许通过求解半纤维编程问题来计算稳定控制增益。由此产生的非线性控制器同时渐近轨道稳定轨道和最终平衡,是局部LipsChitz连续的时间不变,不需要切换,并且具有熟悉的馈送加上反馈状结构。该方法还通过基于同步函数的参数来互补,用于规划具有一定程度的疏松的机械系统的机械系统。 “蝴蝶”机器人在两点之间的球滚动的非预先生操纵任务的数值模拟证明了合成的功效。
translated by 谷歌翻译
受约束运动控制的最新进展使其成为在具有挑战性的任务中使用任意几何形状控制机器人的有吸引力的策略。当前大多数作品都假定机器人运动模型足够精确,可以完成手头的任务。但是,随着机器人应用的需求和安全要求的增加,需要在线补偿运动学不准确的控制器。我们提出了基于二次编程的自适应约束运动控制策略,该策略使用部分或完整的任务空间测量来补偿在线校准错误。与最先进的运动学控制策略相比,我们的方法在实验中得到了验证。
translated by 谷歌翻译
We propose a path planning methodology for a mobile robot navigating through an obstacle-filled environment to generate a reference path that is traceable with moderate sensing efforts. The desired reference path is characterized as the shortest path in an obstacle-filled Gaussian belief manifold equipped with a novel information-geometric distance function. The distance function we introduce is shown to be an asymmetric quasi-pseudometric and can be interpreted as the minimum information gain required to steer the Gaussian belief. An RRT*-based numerical solution algorithm is presented to solve the formulated shortest-path problem. To gain insight into the asymptotic optimality of the proposed algorithm, we show that the considered path length function is continuous with respect to the topology of total variation. Simulation results demonstrate that the proposed method is effective in various robot navigation scenarios to reduce sensing costs, such as the required frequency of sensor measurements and the number of sensors that must be operated simultaneously.
translated by 谷歌翻译
机器人群系统现在对许多具有挑战性的应用越来越吸引人。任何机器人的主要任务是到达目的地,同时保持与其他机器人和障碍物的安全分离。在许多情况下,机器人需要在狭窄的走廊内移动,穿过窗户或门框。为了引导所有机器人在杂乱的环境中移动,在本文中仔细设计了没有障碍物的曲线虚拟管。管内部没有障碍物,即管内的区域可以被视为安全区。然后,提出了一种具有三个精细控制术语的分布式群控制器:线路接近项,机器人避免期限和管保持术语。正式分析和证据表明,可以在有限时间内解决曲线虚拟管通过问题。为方便起见,提出了一种具有近似控制性能的修改式控制器。最后,通过数值模拟和实验验证了所提出的方法的有效性。为了展示所提出的方法的优点,我们的方法和控制屏障功能方法之间的比较也在计算速度方面呈现。
translated by 谷歌翻译
对于多面体之间的障碍物躲避开发的控制器是在狭小的空间导航一个具有挑战性的和必要的问题。传统的方法只能制定的避障问题,因为离线优化问题。为了应对这些挑战,我们提出用非光滑控制屏障功能多面体之间的避障,它可以实时与基于QP的优化问题来解决基于二元安全关键最优控制。一种双优化问题被引入到表示被施加到构造控制屏障功能多面体和用于双形式的拉格朗日函数之间的最小距离。我们验证了避开障碍物与在走廊环境受控的L形(沙发形)机器人建议的双配制剂。据我们所知,这是第一次,实时紧避障与非保守的演习是在移动沙发(钢琴)与非线性动力学问题来实现的。
translated by 谷歌翻译
当球体在平面上遵循直线路径时,本文涉及旋转轧制球体的运动规划。由于球体的运动受到直线的约束,因此球体的旋转运动的控制对于收敛到球体的期望配置是必不可少的。在本文中,我们展示了一种基于新的基于几何的规划方法,其基于该非线性系统的全状态描述。首先,提出了运动规划的问题陈述。接下来,我们通过使用Darboux帧运动学开发作为虚拟表面实现的几何控制器。该虚拟表面产生基于弧长的输入,用于控制球体的轨迹。然后,迭代算法旨在调整所需配置的这些输入。模拟验证了所提出的方法的可行性。
translated by 谷歌翻译
在本文中,我们在混乱的环境中沿多项式轨迹引入了一个通用的连续碰撞检测(CCD)框架,包括各种静态障碍物模型。具体而言,我们发现机器人和障碍物之间的碰撞条件可以转化为一组多项式不平等,其根可以由提议的求解器有效地解决。此外,我们在广泛的CCD框架中测试具有各种运动学和动态约束的不同类型的移动机器人,并验证它允许可证明的碰撞检查并可以计算确切的影响时间。此外,我们将架构与导航系统中的路径计划器相结合。从我们的CCD方法中受益,移动机器人能够在一些具有挑战性的情况下安全地工作。
translated by 谷歌翻译
在本文中,我们为多机器人系统提供了一种分散和无通信的碰撞避免方法,该系统考虑了机器人定位和感测不确定性。该方法依赖于计算每个机器人的不确定感知安全区域,以在高斯分布的不确定性的假设下在环境中导航的其他机器人和环境中的静态障碍物。特别地,在每次步骤中,我们为每个机器人构建一个机器人约束的缓冲不确定性感知的voronoI细胞(B-UAVC)给出指定的碰撞概率阈值。通过将每个机器人的运动约束在其对应的B-UAVC内,即机器人和障碍物之间的碰撞概率仍然可以实现概率碰撞避免。所提出的方法是分散的,无通信,可扩展,具有机器人的数量和机器人本地化和感测不确定性的强大。我们将方法应用于单积分器,双积分器,差动驱动机器人和具有一般非线性动力学的机器人。对地面车辆,四轮车和异质机器人团队进行广泛的模拟和实验,以分析和验证所提出的方法。
translated by 谷歌翻译
我们为非全面移动机器人设计了MPC方法,并在分析上表明,随着时间的变化,线性化的系统可以在跟踪任务中的来源周围产生渐近稳定性。为了避免障碍物,我们提出了速度空间中的约束,该约束根据当前状态明确耦合两个控件输入。
translated by 谷歌翻译
This paper provides an introduction and overview of recent work on control barrier functions and their use to verify and enforce safety properties in the context of (optimization based) safety-critical controllers. We survey the main technical results and discuss applications to several domains including robotic systems.
translated by 谷歌翻译
我们提出了一种基于流动的控制策略,该策略使资源受限的海洋机器人能够在给定范围内周期性的轨道轨迹上巡逻类似Gyre的流动环境。控制器不需要流场的详细模型,而仅依赖于机器人的位置相对于GYRE的中心。该机器人不是精确地跟踪预定义的轨迹,而是任务保留在两个具有已知周期性的边界轨迹之间。此外,提出的策略利用周围的流场最大程度地减少控制努力。我们证明,提出的策略使机器人能够在满足所需周期性要求的流量中循环。我们的方法在模拟和实验中使用低成本,不足的表面游泳机器人(即Modboat)进行了测试和验证。
translated by 谷歌翻译